Moayyedi P, Duffy J, Delaney B
Gastroenterology Division, McMaster University, Ontario, Canada.
Gut. 2004 May;53 Suppl 4(Suppl 4):iv55-7. doi: 10.1136/gut.2003.034363.
The accuracy of symptoms in diagnosing gastro-oesophageal reflux disease (GORD) is complicated by the lack of a gold standard test. Statistical techniques such as latent class and Bayesian analyses can estimate accuracy of symptoms without a gold standard. Both techniques require three independent diagnostic tests. Latent class analysis makes no assumptions about the performance of the tests. Bayesian analysis is useful when the accuracy of the other tests is known. These statistical techniques should be used in the future to validate GORD symptom questionnaires comparing them with endoscopy, oesophageal pH monitoring, and response to proton pump inhibitor therapy. Studies that evaluate GORD symptoms are usually done in secondary care. The prevalence of GORD in primary care will be lower and this reduces the positive predictive value of symptoms. There will be some bias in the type of patient referred for diagnosis and this usually decreases the specificity of symptom diagnosis.
由于缺乏金标准检测方法,症状在诊断胃食管反流病(GORD)时的准确性变得复杂。诸如潜在类别分析和贝叶斯分析等统计技术可以在没有金标准的情况下估计症状的准确性。这两种技术都需要三项独立的诊断测试。潜在类别分析不对测试性能做任何假设。当其他测试的准确性已知时,贝叶斯分析很有用。这些统计技术今后应用于验证GORD症状问卷,并将其与内窥镜检查、食管pH监测以及质子泵抑制剂治疗反应进行比较。评估GORD症状的研究通常在二级医疗保健机构进行。初级医疗保健机构中GORD的患病率会更低,这降低了症状的阳性预测值。转诊进行诊断的患者类型会存在一些偏差,这通常会降低症状诊断的特异性。
Aliment Pharmacol Ther. 2006-11-1
Aliment Pharmacol Ther. 2013-1-7
Neurogastroenterol Motil. 2009-8
Qual Life Res. 2011-1-12
Gut. 2004-5
Stat Methods Med Res. 2000-6
Am J Gastroenterol. 1999-11
BMJ. 1998-10-24
Stat Methods Med Res. 1996-6
Am J Psychiatry. 1994-5