Winneke G
Department of Psychophysiology, Heinrich-Heine-Universität Düsseldorf, F.R.G.
Neurotoxicology. 1992 Spring;13(1):15-25.
The theory of phylogenetic continuity of animal species is the basis of any comparative or extrapolative endeavour (Calabrese, 1983). Cross species extrapolation is also a prerequisite for hazard identification in general and developmental neurotoxicology. Two steps must be distinguished: The first step is endpoint-based or qualitative, whereas the second is dose-based or quantitative. Comparison of different species, typically rodents, nonhuman primates and humans, in terms of endpoints is preferentially done within a framework of broad functional categories, such as sensory, motivational, cognitive, motor, and social variables. Within each category specific neurobehavioral as well as electrophysiological measures need to be considered; typically the degree of comparability is higher for electrophysiological than for most behavioral measures. For some frequently used behavioral endpoints in human neurotoxicology, such as psychometric IQ, there is no direct animal counterpart. Once the neural substrate of a particular neurotoxic effect has been identified, as is true for several chemicals such as the pyrethroid insecticides, the organophosphates, most nerve gases or MPTP, or if interspecies comparability in terms of endpoints has proven satisfactory, an effort towards quantitative, dose-based extrapolation is needed. Here species-specific differences in toxicokinetics and metabolism must be taken into consideration in order to arrive at valid translations of dose-response contingencies. If at all possible internal rather than external doses should serve as the frame of reference here. Neurotoxic chemicals of environmental concern for which an adequate data base is available for comparative purposes include alcohol, carbon monoxide, lead, methylmercury and polychlorinated biphenyls (PCB). Principles of cross species extrapolation in neurotoxicology will be illustrated by means of representative neurobehavioral and electrophysiological findings.
动物物种系统发育连续性理论是任何比较或推断性研究的基础(卡拉布雷斯,1983年)。跨物种推断也是一般危害识别和发育神经毒理学的先决条件。必须区分两个步骤:第一步是基于终点或定性的,而第二步是基于剂量或定量的。在终点方面对不同物种(通常是啮齿动物、非人灵长类动物和人类)进行比较,优先在广泛的功能类别框架内进行,例如感觉、动机、认知、运动和社会变量。在每个类别中,需要考虑特定的神经行为以及电生理测量;通常,电生理测量的可比性程度高于大多数行为测量。对于人类神经毒理学中一些常用的行为终点,如心理测量智商,没有直接对应的动物指标。一旦确定了特定神经毒性效应的神经基础,就像几种化学物质(如拟除虫菊酯类杀虫剂、有机磷化合物、大多数神经性毒剂或MPTP)那样,或者如果终点方面的种间可比性已被证明令人满意,就需要努力进行基于剂量的定量推断。在这里,必须考虑毒代动力学和代谢方面的物种特异性差异,以便得出剂量-反应关系的有效转换。如果可能的话,这里应以内部剂量而非外部剂量作为参考框架。有足够数据库可用于比较目的的受环境关注的神经毒性化学物质包括酒精、一氧化碳、铅、甲基汞和多氯联苯(PCB)。神经毒理学中的跨物种推断原则将通过代表性的神经行为和电生理研究结果来说明。