Amor David J, Bentley Karen, Ryan Jacinta, Perry Jo, Wong Lee, Slater Howard, Choo K H Andy
Murdoch Children's Research Institute and Department of Paediatrics, Genetic Health Services Victoria, Royal Children's Hospital, Flemington Road, Victoria 3052, Australia.
Proc Natl Acad Sci U S A. 2004 Apr 27;101(17):6542-7. doi: 10.1073/pnas.0308637101. Epub 2004 Apr 14.
Centromere repositioning provides a potentially powerful evolutionary force for reproductive isolation and speciation, but the underlying mechanisms remain ill-defined. An attractive model is through the simultaneous inactivation of a normal centromere and the formation of a new centromere at a hitherto noncentromeric chromosomal location with minimal detrimental effect. We report a two-generation family in which the centromeric activity of one chromosome 4 has been relocated to a euchromatic site at 4q21.3 through the epigenetic formation of a neocentromere in otherwise cytogenetically normal and mitotically stable karyotypes. Strong epigenetic inactivation of the original centromere is suggested by retention of 1.3 megabases of centromeric alpha-satellite DNA, absence of detectable molecular alteration in chromosome 4-centromereproximal p- and q-arm sequences, and failure of the inactive centromere to be reactivated through extensive culturing or treatment with histone deacetylase inhibitor trichostatin A. The neocentromere binds functionally essential centromere proteins (CENP-A, CENP-C, CENP-E, CENP-I, BUB1, and HP1), although a moderate reduction in CENP-A binding and sister-chromatid cohesion compared with the typical centromeres suggests possible underlying structural/functional differences. The stable mitotic and meiotic transmissibility of this pseudodicentric-neocentric chromosome in healthy individuals and the ability of the neocentric activity to form in a euchromatic site in preference to a preexisting alphoid domain provide direct evidence for an inherent mechanism of human centromere repositioning and karyotype evolution "in progress." We discuss the wider implication of such a mechanism for meiotic drive and the evolution of primate and other species.
着丝粒重新定位为生殖隔离和物种形成提供了一种潜在的强大进化力量,但其潜在机制仍不清楚。一个有吸引力的模型是通过正常着丝粒的同时失活以及在迄今非着丝粒的染色体位置形成一个新的着丝粒,且对细胞的有害影响最小。我们报告了一个两代家族,其中一条4号染色体的着丝粒活性已通过在细胞遗传学上正常且有丝分裂稳定的核型中表观遗传形成新着丝粒而重新定位到4q21.3的常染色质位点。保留1.3兆碱基的着丝粒α卫星DNA、4号染色体着丝粒近端p臂和q臂序列未检测到分子改变,以及通过广泛培养或用组蛋白去乙酰化酶抑制剂曲古抑菌素A处理后失活的着丝粒未能重新激活,这些都表明原始着丝粒发生了强烈的表观遗传失活。新着丝粒结合功能上必不可少的着丝粒蛋白(CENP - A、CENP - C、CENP - E、CENP - I、BUB1和HP1),尽管与典型着丝粒相比,CENP - A结合和姐妹染色单体黏连有适度减少,这表明可能存在潜在的结构/功能差异。这种假双着丝粒 - 新着丝粒染色体在健康个体中稳定的有丝分裂和减数分裂传递性,以及新着丝粒活性优先在常染色质位点而非预先存在的α卫星结构域形成的能力,为人类着丝粒重新定位和核型进化“正在进行”的内在机制提供了直接证据。我们讨论了这种机制对减数分裂驱动以及灵长类和其他物种进化的更广泛意义。