Farell Bart, Li Simone, McKee Suzanne P
Institute for Sensory Research, Syracuse University, Syracuse, NY, USA.
J Vis. 2004 Mar 16;4(3):156-68. doi: 10.1167/4.3.3.
The classic increment disparity threshold function rises steeply, usually exponentially, with disparity pedestal. Thus a smaller difference in stereoscopic depth can be resolved the nearer it is to the fixation plane. This result has been obtained with relatively broad-bandwidth stimuli. We show here that the increment threshold function for narrow-bandwidth stimuli differs subtly from the classic function: Thresholds vary only modestly over a +/- quarter-cycle pedestal range, by a factor of about 2, and frequently show a dip, yielding best stereo acuity not at the fixation plane but at moderate disparities (20 degrees-30 degrees in phase) on either side of it. Though the dip has not been noted previously, it is consistent with models of disparity processing in which filter sensitivity or selectivity is greatest at a disparity of zero. Moreover, the relatively flat increment threshold function observed at any one scale is compatible with a steeply rising function for broad-bandwidth stimuli.
经典的增量视差阈值函数通常呈指数形式急剧上升,与视差基座相关。因此,立体深度上较小的差异在越靠近注视平面的地方越容易分辨。这一结果是通过相对宽带宽的刺激获得的。我们在此表明,窄带宽刺激的增量阈值函数与经典函数略有不同:在正负四分之一周期的基座范围内,阈值仅适度变化,约为2倍,并且经常出现一个凹陷,最佳立体视敏度并非出现在注视平面,而是在其两侧中等视差(相位为20度至30度)处。尽管此前未注意到这个凹陷,但它与视差处理模型一致,在该模型中,滤波器灵敏度或选择性在视差为零时最大。此外,在任何一个尺度上观察到的相对平坦的增量阈值函数与宽带宽刺激的急剧上升函数是兼容的。