Suppr超能文献

Modulation of cyclic AMP production by signal transduction pathways in preglomerular microvessels and microvascular smooth muscle cells.

作者信息

Jackson Travis C, Mi Zaichuan, Jackson Edwin K

机构信息

Department of Medicine, Center for Clinical Pharmacology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA.

出版信息

J Pharmacol Exp Ther. 2004 Jul;310(1):349-58. doi: 10.1124/jpet.103.063081. Epub 2004 Apr 15.

Abstract

Cyclic AMP affects microvascular smooth muscle contraction and growth. Therefore, it is important to elucidate mechanisms regulating cyclic AMP production in microvascular smooth muscle. In this study, we determined whether several signal transduction pathways regulate receptor-induced cyclic AMP in isolated preglomerular microvessels and microvascular smooth muscle cells. Preglomerular microvessels were incubated with isoproterenol (beta-adrenoceptor agonist) and with and without U73122 (phospholipase C inhibitor), GF109203X (protein kinase C inhibitor), 1-butanol (phospholipase D inhibitor), CGP77675 (c-src inhibitor), HA1077 (Rho kinase inhibitor), Y27632 (Rho kinase inhibitor), LY294002 (phosphatidylinositol-3-kinase inhibitor), dipenyleneiodonium (NADPH oxidase inhibitor), or Tempol (superoxide dismutase mimetic). Cultured preglomerular microvascular smooth muscle cells were incubated with isoproterenol or forskolin (direct activator of adenylyl cyclase) and with or without U73122, C(2)-ceramide (phospholipase D inhibitor), or PP1 [src family inhibitor, 1-(1,1-dimethylethyl)-1-(4-methylphenyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine]. All studies were conducted with 3-isobutyl-1-methylxanthine (broad-spectrum phosphodiesterase inhibitor) to eliminate changes in cyclic AMP degradation. In microvessels isoproterenol-induced cyclic AMP was not affected by Y27632, HA1007, LY294002, dipenylene-iodonium, or Tempol; was increased by U73122 and GF109203X; and was decreased by 1-butanol and CGP77675. In cells, U73122 increased and C(2)-ceramide and PP1 decreased isoproterenol-induced cyclic AMP. Forskolin-induced cyclic AMP was not altered. These results indicate that receptor-mediated activation of adenylyl cyclase is 1) not modulated by Rho kinase, phosphatidylinositol-3-kinase, NADPH oxidase, or superoxide; 2) is attenuated by phospholipase C and protein kinase C; and 3) is augmented by phospholipase D and src. Phospholipase C, phospholipase D, and src modulate receptor-induced cyclic AMP by affecting beta-adrenoreceptor/G protein/adenylyl cyclase coupling rather than by directly affecting adenylyl cyclase activity.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验