Suppr超能文献

基于时域有限差分法的薛定谔方程本征值问题

Eigenvalue problem of the Schrödinger equation via the finite-difference time-domain method.

作者信息

Ren G B, Rorison J M

机构信息

Department of Electrical and Electronic Engineering, University of Bristol, BS8 1TR, United Kingdom.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Mar;69(3 Pt 2):036705. doi: 10.1103/PhysRevE.69.036705. Epub 2004 Mar 31.

Abstract

We present a very efficient scheme to calculate the eigenvalue problem of the time-independent Schrödinger equation. The eigenvalue problem can be solved via an initial-value procedure of the time-dependent Schrödinger equation. First, the time evolution of the wave function is calculated by the finite-difference time-domain method. Then the eigenenergies of the electron system can be obtained through a fast Fourier transformation along the time axis of the wave function after some point. The computing effort for this scheme is roughly proportional to the total grid points involved in the structure and it is suitable for large scale quantum systems. We have applied this approach to the three-dimensional GaN quantum dot system involving one million grid points. It takes only 7 h to calculate the confined energies and the wave functions on a standard 2-GHz Pentium 4 computer. The proposed approach can be implemented in a parallel computer system to study more complex systems.

摘要

我们提出了一种非常有效的方案来计算与时间无关的薛定谔方程的本征值问题。该本征值问题可以通过含时薛定谔方程的初值过程来求解。首先,利用时域有限差分法计算波函数的时间演化。然后,在经过某一点后,通过沿波函数时间轴进行快速傅里叶变换,可以得到电子系统的本征能量。该方案的计算量大致与结构中涉及的总网格点数成正比,适用于大规模量子系统。我们已将此方法应用于包含一百万个网格点的三维氮化镓量子点系统。在一台标准的2-GHz奔腾4计算机上计算受限能量和波函数仅需7小时。所提出的方法可以在并行计算机系统中实现,以研究更复杂的系统。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验