Suppr超能文献

Effects of soil-applied lead on seedling growth and ectomycorrhizal colonization of loblolly pine.

作者信息

Chappelka A H, Kush J S, Runion G B, Meier S, Kelley W D

机构信息

School of Forestry and Alabama Agricultural Experiment Station, M. White-Smith Hall, Auburn University, Alabama 36849-5418, USA.

出版信息

Environ Pollut. 1991;72(4):307-16. doi: 10.1016/0269-7491(91)90004-g.

Abstract

Six-month-old loblolly pine (Pinus taeda) were grown for 15 weeks in two native soils amended with 0, 30, 60, 120, 240 or 480 mg kg(-1) Pb as PbCl2. Ectomycorrhizae were quantified, by morphotype, as the total number of tips per centimeter, and as the number of tips for each morphotype and for Cenococcum geophilum. Total numbers of non-ectomycorrhizal short roots and necrotic tips were recorded. Total height and biomass exhibited a non-linear response to soil-applied lead. Growth generally was greatest in the controls and higher treatments, and least in the intermediate treatments. In both soils, Pb concentrations in roots increased linearly with increasing levels of soil-applied Pb. Neither foliage nor stems exhibited significant increases in Pb concentrations with increasing levels of Pb. Significant linear decreases in total numbers of ectomycorrhizal tips and significant linear increases in non-ectomycorrhizal short roots and necrotic tips occurred with increasing levels of Pb in the soil. The majority of individual morphotypes decreased with increasing Pb. However, the number of ectomycorrhizal tips formed by C. geophilium increased with increasing soil Pb levels after 15 weeks of treatment. These results indicate that short-term loblolly pine seedling growth is not inhibited by increasing Pb levels. Ectomycorrhizal formation decreased, and alterations in species composition occurred as a result of increasing concentrations of soil-applied Pb. These effects on ectomycorrhizae may cause long-term changes in nutrient and water balances, which could reduce tree vigor.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验