Nilsson Håkan O
Centre for Built Environment, Gävle University, 801 76 Gäv, Sweden.
Eur J Appl Physiol. 2004 Sep;92(6):714-6. doi: 10.1007/s00421-004-1111-8.
Investigations have been made on ways to evaluate and visualise the perceived thermal climate. Thermal interaction with windows, heating, ventilation and seating influence the occupant's thermal situation. When this information on the physical thermal climate is linked together with human thermal sensation in "comfort-zone diagrams", valuable knowledge about the thermal situation can be visualised. Thermal manikin measurements of local climate disturbances with two different thermal manikins are found to be well correlated with the thermal sensation experienced by panels of subjects exposed to the same conditions. Differences both in manikin shape and construction, as well as testing conditions and panel members, make limit lines differ at some points. Comfort diagrams can be defined by equivalent temperature (t(eq)) limit lines; however, a consequence of individual and experimental variations is that it is not an optimal solution to have diagrams with absolute limit lines, rather a range of t(eq) values, forming new "comfort-zone diagrams". This improvement provides a more appropriate base for assessment of a complex local thermal climate, and opens up the possibility of a general profile that can be used with different manikins, possibly also different methods, in a variety of environments. However, more data from validation experiments with subjects and different methods will contribute to the development of a more general evaluation concept.
已对评估和可视化感知热环境的方法进行了研究。与窗户、供暖、通风和座位的热相互作用会影响居住者的热状况。当关于物理热环境的这些信息与“舒适区图”中的人体热感觉联系在一起时,就可以可视化有关热状况的宝贵知识。使用两种不同的热人体模型对局部气候干扰进行的热人体模型测量结果与暴露在相同条件下的受试者小组所体验到的热感觉密切相关。人体模型的形状和构造、测试条件以及小组成员的差异,使得极限线在某些点有所不同。舒适图可以由等效温度(t(eq))极限线来定义;然而,个体差异和实验变化的一个结果是,拥有具有绝对极限线的图表并非最佳解决方案,而是一系列t(eq)值,形成新的“舒适区图”。这一改进为评估复杂的局部热环境提供了更合适的基础,并开启了一种通用概况的可能性,该概况可用于不同的人体模型,可能也适用于不同的方法,适用于各种环境。然而,来自受试者和不同方法的验证实验的更多数据将有助于开发更通用的评估概念。