Suppr超能文献

Bio-nanomuscle project: contractile properties of single actin filaments in an A-band motility assay system.

作者信息

Suzuki Madoka, Fujita Hideaki, Ishiwata Shinichi

机构信息

Department of Physics, School of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan.

出版信息

Adv Exp Med Biol. 2003;538:103-9; discussion 109-10. doi: 10.1007/978-1-4419-9029-7_9.

Abstract

We have developed a new microscopic technique to measure the force generated on a single actin filament (FA) in the A-band in which the intact lattice structure composed of myosin thick filaments is maintained; we call this newly developed system "Bio-nanomuscle (or an A-band motility assay system)". The A-bands were prepared by selective removal of thin filaments from rabbit skeletal glycerinated myofibrils under optical microscope with the use of gelsolin (a severing and barbed (B)-end capping protein of FA) that was prepared from bovine serum. A polystyrene bead of 1 microm in diameter attached to the B-end of FA (through a gelsolin molecule attached to the surface of the bead) was trapped and manipulated with optical tweezers. The displacement of the bead up to 200 nm (corresponding to the force of approximately 40 pN) was determined by phase-contrast image analysis. At the initial stage of this study, the overlapping length of an FA with the A-band was determined from the fluorescence image of FA labeled with rhodamine-phalloidin (Rh-Ph) and the phase-contrast image, but we later improved the method of determination by moving the sample stage stepwise using the piezo actuator. The average force per overlap was subsequently estimated and the histogram was fitted with two Gaussian distributions. Each peak is supposed to correspond to the force developed by FA interacting outside or inside the A-band, and the peak value of the latter was estimated to be 140 pN/microm. From this value, the average force developed per each cross-bridge (CB; a two-headed myosin molecule) was determined to be 1.3 pN.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验