Suppr超能文献

B染色体在具有近端着丝粒核型的哺乳动物中更为常见:对着丝粒驱动理论的支持。

B chromosomes are more frequent in mammals with acrocentric karyotypes: support for the theory of centromeric drive.

作者信息

Palestis Brian G, Burt Austin, Jones R Neil, Trivers Robert

机构信息

Department of Biological Sciences, Wagner College, Staten Island, NY 10301, USA.

出版信息

Proc Biol Sci. 2004 Feb 7;271 Suppl 3(Suppl 3):S22-4. doi: 10.1098/rsbl.2003.0084.

Abstract

The chromosomes of mammals tend to be either mostly acrocentric (having one long arm) or mostly bi-armed, with few species having intermediate karyotypes. The theory of centromeric drive suggests that this observation reflects a bias during female meiosis, favouring either more centromeres or fewer, and that the direction of this bias changes frequently over evolutionary time. B chromosomes are selfish genetic elements found in some individuals within some species. B chromosomes are often harmful, but persist because they drive (i.e. they are transmitted more frequently than expected). We predicted that species with mainly acrocentric chromosomes would be more likely to harbour B chromosomes than those with mainly bi-armed chromosomes, because female meiosis would favour more centromeres over fewer in species with one-armed chromosomes. Our results show that B chromosomes are indeed more common in species with acrocentric chromosomes, across all mammals, among rodents, among non-rodents and in a test of independent taxonomic contrasts. These results provide independent evidence supporting the theory of centromeric drive and also help to explain the distribution of selfish DNA across species. In addition, we demonstrate an association between the shape of the B chromosomes and the shape of the typical ('A') chromosomes.

摘要

哺乳动物的染色体往往要么大多为近端着丝粒染色体(有一条长臂),要么大多为双臂染色体,只有少数物种具有中间核型。着丝粒驱动理论表明,这一观察结果反映了雌性减数分裂过程中的一种偏向,即偏向于更多或更少的着丝粒,并且这种偏向的方向在进化时间内会频繁变化。B染色体是在某些物种的一些个体中发现的自私遗传元件。B染色体通常是有害的,但它们能够留存下来是因为它们具有驱动作用(即它们的传递频率高于预期)。我们预测,主要具有近端着丝粒染色体的物种比主要具有双臂染色体的物种更有可能含有B染色体,因为在具有单臂染色体的物种中,雌性减数分裂会偏向于更多的着丝粒而非更少的着丝粒。我们的研究结果表明,在所有哺乳动物、啮齿动物、非啮齿动物以及独立分类对比测试中,B染色体在具有近端着丝粒染色体的物种中确实更为常见。这些结果提供了独立的证据支持着丝粒驱动理论,也有助于解释自私DNA在物种间的分布。此外,我们还证明了B染色体的形状与典型(“A”)染色体的形状之间存在关联。

相似文献

1
B chromosomes are more frequent in mammals with acrocentric karyotypes: support for the theory of centromeric drive.
Proc Biol Sci. 2004 Feb 7;271 Suppl 3(Suppl 3):S22-4. doi: 10.1098/rsbl.2003.0084.
3
Prevalence of B chromosomes in Orthoptera is associated with shape and number of A chromosomes.
Genetica. 2010 Dec;138(11-12):1181-9. doi: 10.1007/s10709-010-9509-1. Epub 2010 Oct 31.
4
Genetic conflicts during meiosis and the evolutionary origins of centromere complexity.
Biochem Soc Trans. 2006 Aug;34(Pt 4):569-73. doi: 10.1042/BST0340569.
5
Improved Basic Cytogenetics Challenges Holocentricity of Butterfly Chromosomes.
Cytogenet Genome Res. 2022;162(5):262-272. doi: 10.1159/000526034. Epub 2023 Jan 23.
6
Duplication and Adaptive Evolution of a Key Centromeric Protein in Mimulus, a Genus with Female Meiotic Drive.
Mol Biol Evol. 2015 Oct;32(10):2694-706. doi: 10.1093/molbev/msv145. Epub 2015 Jun 22.
7
Cell Biology of Cheating-Transmission of Centromeres and Other Selfish Elements Through Asymmetric Meiosis.
Prog Mol Subcell Biol. 2017;56:377-396. doi: 10.1007/978-3-319-58592-5_16.
9
Centromere dynamics and chromosome evolution in marsupials.
J Hered. 2004 Sep-Oct;95(5):375-81. doi: 10.1093/jhered/esh063.
10
Evolution of eukaryotic centromeres by drive and suppression of selfish genetic elements.
Semin Cell Dev Biol. 2022 Aug;128:51-60. doi: 10.1016/j.semcdb.2022.03.026. Epub 2022 Mar 26.

引用本文的文献

1
B chromosome and its non-Mendelian inheritance in Atractylodes lancea.
PLoS One. 2024 Sep 11;19(9):e0308881. doi: 10.1371/journal.pone.0308881. eCollection 2024.
2
Evolution of B Chromosomes: From Dispensable Parasitic Chromosomes to Essential Genomic Players.
Front Genet. 2021 Dec 9;12:727570. doi: 10.3389/fgene.2021.727570. eCollection 2021.
3
Ancestral Reconstruction of Karyotypes Reveals an Exceptional Rate of Nonrandom Chromosomal Evolution in Sunflower.
Genetics. 2020 Apr;214(4):1031-1045. doi: 10.1534/genetics.120.303026. Epub 2020 Feb 7.
4
The Modern View of B Chromosomes Under the Impact of High Scale Omics Analyses.
Cells. 2019 Feb 13;8(2):156. doi: 10.3390/cells8020156.
5
Sequence Composition and Evolution of Mammalian B Chromosomes.
Genes (Basel). 2018 Oct 10;9(10):490. doi: 10.3390/genes9100490.
6
B Chromosomes in Populations of Mammals Revisited.
Genes (Basel). 2018 Oct 9;9(10):487. doi: 10.3390/genes9100487.
7
The origin of B chromosomes in yellow-necked mice (Apodemus flavicollis)-Break rules but keep playing the game.
PLoS One. 2017 Mar 22;12(3):e0172704. doi: 10.1371/journal.pone.0172704. eCollection 2017.
8
Genes on B chromosomes of vertebrates.
Mol Cytogenet. 2014 Dec 17;7(1):99. doi: 10.1186/s13039-014-0099-y. eCollection 2014.
9
The contribution of female meiotic drive to the evolution of neo-sex chromosomes.
Evolution. 2012 Oct;66(10):3198-208. doi: 10.1111/j.1558-5646.2012.01681.x. Epub 2012 May 21.
10
Prevalence of B chromosomes in Orthoptera is associated with shape and number of A chromosomes.
Genetica. 2010 Dec;138(11-12):1181-9. doi: 10.1007/s10709-010-9509-1. Epub 2010 Oct 31.

本文引用的文献

1
Conflict begets complexity: the evolution of centromeres.
Curr Opin Genet Dev. 2002 Dec;12(6):711-8. doi: 10.1016/s0959-437x(02)00351-9.
2
Female meiosis drives karyotypic evolution in mammals.
Genetics. 2001 Nov;159(3):1179-89. doi: 10.1093/genetics/159.3.1179.
3
The centromere paradox: stable inheritance with rapidly evolving DNA.
Science. 2001 Aug 10;293(5532):1098-102. doi: 10.1126/science.1062939.
6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验