Suppr超能文献

真核生物着丝粒的进化:自私遗传元件的驱动和抑制作用。

Evolution of eukaryotic centromeres by drive and suppression of selfish genetic elements.

机构信息

Howard Hughes Medical Institute, Whitehead Institute for Biomedical Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.

Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA.

出版信息

Semin Cell Dev Biol. 2022 Aug;128:51-60. doi: 10.1016/j.semcdb.2022.03.026. Epub 2022 Mar 26.

Abstract

Despite the universal requirement for faithful chromosome segregation, eukaryotic centromeres are rapidly evolving. It is hypothesized that rapid centromere evolution represents an evolutionary arms race between selfish genetic elements that drive, or propagate at the expense of organismal fitness, and mechanisms that suppress fitness costs. Selfish centromere DNA achieves preferential inheritance in female meiosis by recruiting more effector proteins that alter spindle microtubule interaction dynamics. Parallel pathways for effector recruitment are adaptively evolved to suppress functional differences between centromeres. Opportunities to drive are not limited to female meiosis, and selfish transposons, plasmids and B chromosomes also benefit by maximizing their inheritance. Rapid evolution of selfish genetic elements can diversify suppressor mechanisms in different species that may cause hybrid incompatibility.

摘要

尽管普遍需要忠实的染色体分离,但真核生物的着丝粒却在迅速进化。有人假设,快速的着丝粒进化代表了一种进化军备竞赛,其中自私的遗传元件驱动或以生物体适应性为代价传播,而抑制适应性代价的机制也在进化。自私的着丝粒 DNA 通过招募更多改变纺锤体微管相互作用动力学的效应蛋白,在雌性减数分裂中优先遗传。用于招募效应蛋白的平行途径是适应性进化的,以抑制着丝粒之间的功能差异。驱动的机会不仅限于雌性减数分裂,自私的转座子、质粒和 B 染色体也通过最大限度地增加其遗传来获益。自私遗传元件的快速进化可以使不同物种中的抑制机制多样化,这可能导致杂种不育。

相似文献

2
Molecular Strategies of Meiotic Cheating by Selfish Centromeres.有丝分裂欺骗的自私着丝粒的分子策略。
Cell. 2019 Aug 22;178(5):1132-1144.e10. doi: 10.1016/j.cell.2019.07.001. Epub 2019 Aug 8.
4
Female meiotic drive in plants: mechanisms and dynamics.植物中的雌性减数分裂驱动:机制与动态。
Curr Opin Genet Dev. 2023 Oct;82:102101. doi: 10.1016/j.gde.2023.102101. Epub 2023 Aug 24.
5
Centromere drive: model systems and experimental progress.着丝粒驱动:模型系统与实验进展。
Chromosome Res. 2022 Sep;30(2-3):187-203. doi: 10.1007/s10577-022-09696-3. Epub 2022 Jun 22.
7
Centromere drive: chromatin conflict in meiosis.着丝粒驱动:减数分裂中的染色质冲突。
Curr Opin Genet Dev. 2022 Dec;77:102005. doi: 10.1016/j.gde.2022.102005. Epub 2022 Nov 11.

引用本文的文献

本文引用的文献

6
Distinct kinesin motors drive two types of maize neocentromeres.不同的驱动蛋白可驱动两种类型的玉米着丝粒。
Genes Dev. 2020 Sep 1;34(17-18):1239-1251. doi: 10.1101/gad.340679.120. Epub 2020 Aug 20.
8
Holocentric chromosomes.着丝粒染色体。
PLoS Genet. 2020 Jul 30;16(7):e1008918. doi: 10.1371/journal.pgen.1008918. eCollection 2020 Jul.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验