Charizopoulou Nikoletta, Jansen Silke, Dorsch Martina, Stanke Frauke, Dorin Julia R, Hedrich Hans-Jürgen, Tümmler Burkhard
Klinische Forschergruppe, OE 6710, Medizinische Hochschule Hannover, D-30625 Hannover, Germany.
BMC Genet. 2004 Apr 21;5:6. doi: 10.1186/1471-2156-5-6.
A major boost to the cystic fibrosis disease research was given by the generation of various mouse models using gene targeting in embryonal stem cells. Moreover, the introduction of the same mutation on different inbred strains generating congenic strains facilitated the search for modifier genes. From the original CftrTgH(neoim)Hgu CF mouse model we have generated using strict brother x sister mating two inbred CftrTgH(neoim)Hgu mouse lines (CF/1 and CF/3). Thereafter, the insertional mutation was introgressed from CF/3 into three inbred backgrounds (C57BL/6, BALB/c, DBA/2J) generating congenic animals. In every backcross cycle germline transmission of the insertional mutation was monitored by direct probing the insertion via Southern RFLP. In order to bypass this time consuming procedure we devised an alternative PCR based protocol whereby mouse strains are differentiated at the Cftr locus by Cftr intragenic microsatellite genotypes that are tightly linked to the disrupted locus.
Using this method we were able to identify animals carrying the insertional mutation based upon the differential haplotypic backgrounds of the three inbred strains and the mutant CftrTgH(neoim)Hgu at the Cftr locus. Moreover, this method facilitated the identification of the precise vector excision from the disrupted Cftr locus in two out of 57 typed animals. This reversion to wild type status took place without any loss of sequence revealing the instability of insertional mutations during the production of congenic animals.
We present intragenic microsatellite markers as a tool for fast and efficient identification of the introgressed locus of interest in the recipient strain during congenic animal breeding. Moreover, the same genotyping method allowed the identification of a vector excision event, posing questions on the stability of insertional mutations in mice.
利用胚胎干细胞基因靶向技术构建多种小鼠模型,极大地推动了囊性纤维化疾病的研究。此外,在不同近交系上引入相同突变以产生同源近交系,有助于寻找修饰基因。我们从最初的CftrTgH(neoim)Hgu囊性纤维化小鼠模型开始,通过严格的兄妹交配培育出了两个近交的CftrTgH(neoim)Hgu小鼠品系(CF/1和CF/3)。此后,将插入突变从CF/3导入三个近交背景(C57BL/6、BALB/c、DBA/2J),培育出同源动物。在每个回交世代,通过Southern RFLP直接检测插入片段来监测插入突变的种系传递。为了绕过这一耗时的过程,我们设计了一种基于PCR的替代方案,通过与破坏位点紧密连锁的Cftr基因内微卫星基因型来区分Cftr位点的小鼠品系。
使用这种方法,我们能够根据三个近交系和Cftr位点的突变型CftrTgH(neoim)Hgu的不同单倍型背景,鉴定携带插入突变的动物。此外,该方法有助于在57只基因分型动物中的两只中,鉴定出从破坏的Cftr位点精确切除载体的情况。这种恢复到野生型状态的过程没有任何序列丢失,揭示了同源动物生产过程中插入突变的不稳定性。
我们提出基因内微卫星标记作为一种工具,用于在同源动物育种过程中快速有效地鉴定受体品系中感兴趣的渗入位点。此外,相同的基因分型方法能够鉴定载体切除事件,这对小鼠中插入突变的稳定性提出了疑问。