Suppr超能文献

尽管存在中间阻断,DNA错配仍向错配修复切除位点发出信号。

Signaling from DNA mispairs to mismatch-repair excision sites despite intervening blockades.

作者信息

Wang Huixian, Hays John B

机构信息

Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331-7301, USA.

出版信息

EMBO J. 2004 May 19;23(10):2126-33. doi: 10.1038/sj.emboj.7600153. Epub 2004 Apr 22.

Abstract

Mismatch-repair (MMR) systems promote genomic stability by correction of DNA replication errors. Thus, MMR proteins--prokaryotic MutS and MutL homodimers or their MutSalpha and MutLalpha heterodimer homologs, plus accessory proteins--specifically couple mismatch recognition to nascent-DNA excision. In vivo excision-initiation signals--specific nicks in some prokaryotes, perhaps growing 3' ends or Okazaki-fragment 5' ends in eukaryotes--are efficiently mimicked in vitro by nicks or gaps in exogenous DNA substrates. In some models for recognition-excision coupling, MutSalpha bound to mismatches is induced by ATP hydrolysis, or simply by binding of ATP, to slide along DNA to excision-initiation sites, perhaps in association with MutLalpha and accessory proteins. In other models, MutSalpha.MutLalpha complexes remain fixed at mismatches and contact distant excision sites by DNA looping. To challenge the hypothesis that recognition complexes remain fixed, we placed biotin-streptavidin blockades between mismatches and pre-existing nicks. In human nuclear extracts, mismatch efficiently provoked the initiation of excision despite the intervening barriers, as predicted. However, excision progress and therefore mismatch correction were prevented.

摘要

错配修复(MMR)系统通过纠正DNA复制错误来促进基因组稳定性。因此,MMR蛋白——原核生物的MutS和MutL同型二聚体或它们的MutSα和MutLα异型二聚体同源物,加上辅助蛋白——将错配识别与新生DNA切除特异性地联系起来。体内切除起始信号——某些原核生物中的特定切口,在真核生物中可能是正在生长的3'端或冈崎片段的5'端——在外源DNA底物中的切口或缺口在体外能被有效地模拟。在一些识别-切除偶联模型中,与错配结合的MutSα通过ATP水解,或仅仅通过ATP结合,被诱导沿着DNA滑动到切除起始位点,可能与MutLα和辅助蛋白结合。在其他模型中,MutSα.MutLα复合物保持固定在错配处,并通过DNA环化与远处的切除位点接触。为了挑战识别复合物保持固定的假说,我们在错配和预先存在的切口之间放置了生物素-链霉亲和素阻断物。在人核提取物中,如预期的那样,尽管有中间屏障,错配仍有效地引发了切除起始。然而,切除进程以及因此的错配修复被阻止了。

相似文献

1
Signaling from DNA mispairs to mismatch-repair excision sites despite intervening blockades.
EMBO J. 2004 May 19;23(10):2126-33. doi: 10.1038/sj.emboj.7600153. Epub 2004 Apr 22.
3
Mechanism of 5'-directed excision in human mismatch repair.
Mol Cell. 2003 Nov;12(5):1077-86. doi: 10.1016/s1097-2765(03)00428-3.
4
Discrimination and versatility in mismatch repair.
DNA Repair (Amst). 2005 Dec 8;4(12):1463-74. doi: 10.1016/j.dnarep.2005.09.002. Epub 2005 Oct 5.
5
Reconstitution of 5'-directed human mismatch repair in a purified system.
Cell. 2005 Sep 9;122(5):693-705. doi: 10.1016/j.cell.2005.06.027.
6
DNA mismatch repair and mutation avoidance pathways.
J Cell Physiol. 2002 Apr;191(1):28-41. doi: 10.1002/jcp.10077.
8
Dynamic human MutSα-MutLα complexes compact mismatched DNA.
Proc Natl Acad Sci U S A. 2020 Jul 14;117(28):16302-16312. doi: 10.1073/pnas.1918519117. Epub 2020 Jun 25.
9
Human DNA mismatch repair: coupling of mismatch recognition to strand-specific excision.
Nucleic Acids Res. 2007;35(20):6727-39. doi: 10.1093/nar/gkm734. Epub 2007 Oct 4.
10
Analysis of the human MutLalpha.MutSalpha complex.
Biochem Biophys Res Commun. 2006 Feb 17;340(3):852-9. doi: 10.1016/j.bbrc.2005.12.096. Epub 2005 Dec 27.

引用本文的文献

3
Chromosomal directionality of DNA mismatch repair in Escherichia coli.
Proc Natl Acad Sci U S A. 2015 Jul 28;112(30):9388-93. doi: 10.1073/pnas.1505370112. Epub 2015 Jul 13.
4
Postreplicative mismatch repair.
Cold Spring Harb Perspect Biol. 2013 Apr 1;5(4):a012633. doi: 10.1101/cshperspect.a012633.
5
Nicking enzyme-based internal labeling of DNA at multiple loci.
Nat Protoc. 2012 Mar 8;7(4):643-53. doi: 10.1038/nprot.2012.008.
7
Atomic force microscopy captures MutS tetramers initiating DNA mismatch repair.
EMBO J. 2011 Jun 10;30(14):2881-93. doi: 10.1038/emboj.2011.180.
8
Isolated short CTG/CAG DNA slip-outs are repaired efficiently by hMutSbeta, but clustered slip-outs are poorly repaired.
Proc Natl Acad Sci U S A. 2010 Jul 13;107(28):12593-8. doi: 10.1073/pnas.0909087107. Epub 2010 Jun 22.
9
Maintaining a sense of direction during long-range communication on DNA.
Biochem Soc Trans. 2010 Apr;38(2):404-9. doi: 10.1042/BST0380404.
10
DNA mismatch repair: molecular mechanism, cancer, and ageing.
Mech Ageing Dev. 2008 Jul-Aug;129(7-8):391-407. doi: 10.1016/j.mad.2008.02.012. Epub 2008 Mar 4.

本文引用的文献

2
The coordinated functions of the E. coli MutS and MutL proteins in mismatch repair.
Mol Cell. 2003 Jul;12(1):233-46. doi: 10.1016/s1097-2765(03)00219-3.
4
Evidence for preferential mismatch repair of lagging strand DNA replication errors in yeast.
Curr Biol. 2003 Apr 29;13(9):744-8. doi: 10.1016/s0960-9822(03)00284-7.
5
DNA template requirements for human mismatch repair in vitro.
J Biol Chem. 2002 Aug 23;277(34):30805-14. doi: 10.1074/jbc.M200846200. Epub 2002 Jun 19.
10
Functional interactions and signaling properties of mammalian DNA mismatch repair proteins.
Cell Death Differ. 2001 Nov;8(11):1076-92. doi: 10.1038/sj.cdd.4400948.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验