Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599.
Renaissance Computing Institute, University of North Carolina, Chapel Hill, NC 27599.
Proc Natl Acad Sci U S A. 2020 Jul 14;117(28):16302-16312. doi: 10.1073/pnas.1918519117. Epub 2020 Jun 25.
DNA mismatch repair (MMR) corrects errors that occur during DNA replication. In humans, mutations in the proteins MutSα and MutLα that initiate MMR cause Lynch syndrome, the most common hereditary cancer. MutSα surveilles the DNA, and upon recognition of a replication error it undergoes adenosine triphosphate-dependent conformational changes and recruits MutLα. Subsequently, proliferating cell nuclear antigen (PCNA) activates MutLα to nick the error-containing strand to allow excision and resynthesis. The structure-function properties of these obligate MutSα-MutLα complexes remain mostly unexplored in higher eukaryotes, and models are predominately based on studies of prokaryotic proteins. Here, we utilize atomic force microscopy (AFM) coupled with other methods to reveal time- and concentration-dependent stoichiometries and conformations of assembling human MutSα-MutLα-DNA complexes. We find that they assemble into multimeric complexes comprising three to eight proteins around a mismatch on DNA. On the timescale of a few minutes, these complexes rearrange, folding and compacting the DNA. These observations contrast with dominant models of MMR initiation that envision diffusive MutS-MutL complexes that move away from the mismatch. Our results suggest MutSα localizes MutLα near the mismatch and promotes DNA configurations that could enhance MMR efficiency by facilitating MutLα nicking the DNA at multiple sites around the mismatch. In addition, such complexes may also protect the mismatch region from nucleosome reassembly until repair occurs, and they could potentially remodel adjacent nucleosomes.
DNA 错配修复 (MMR) 纠正 DNA 复制过程中发生的错误。在人类中,启动 MMR 的 MutSα 和 MutLα 蛋白中的突变导致林奇综合征,这是最常见的遗传性癌症。MutSα 监测 DNA,一旦发现复制错误,它就会经历依赖于三磷酸腺苷的构象变化,并招募 MutLα。随后,增殖细胞核抗原 (PCNA) 激活 MutLα 对含有错误的链进行切口,以便进行切除和重新合成。这些必需的 MutSα-MutLα 复合物的结构-功能特性在高等真核生物中大多尚未得到探索,模型主要基于原核蛋白的研究。在这里,我们利用原子力显微镜 (AFM) 结合其他方法来揭示组装人 MutSα-MutLα-DNA 复合物的时间和浓度依赖性化学计量和构象。我们发现它们组装成多聚体复合物,在 DNA 上的错配周围包含三到八个蛋白质。在几分钟的时间尺度内,这些复合物会重新排列,折叠并压缩 DNA。这些观察结果与 MMR 起始的主导模型形成对比,这些模型设想扩散的 MutS-MutL 复合物会从错配处移动。我们的结果表明 MutSα 将 MutLα 定位在错配附近,并促进 DNA 构象,从而通过促进 MutLα 在错配周围的多个位点对 DNA 进行切口来提高 MMR 效率。此外,这些复合物还可以防止错配区域重新组装核小体,直到修复发生,并且它们还可以潜在地重塑相邻的核小体。