Odley Amy, Hahn Harvey S, Lynch Roy A, Marreez Yehia, Osinska Hanna, Robbins Jeffrey, Dorn Gerald W
Heart and Vascular Center, University of Cincinnati, Cincinnati, OH 45267, USA.
Proc Natl Acad Sci U S A. 2004 May 4;101(18):7082-7. doi: 10.1073/pnas.0308335101. Epub 2004 Apr 22.
Catecholaminergic activation of myocardial beta-adrenergic receptors (betaAR) is the principle mechanism regulating cardiac function. Agonists desensitize betaAR through G protein-coupled receptor kinase-mediated uncoupling and beta-arrestin-mediated internalization. Although inhibition of myocardial G protein-coupled receptor kinase-2 enhances cardiac function and reverses heart failure, pathophysiological effects of modulated betaAR internalization/recycling are unknown. We used mutation and transgenic expression of Rab4, which regulates vesicular transport of heptahelical receptors to plasma membranes, to interrogate in vivo betaAR trafficking and cardiac function. Expression of constitutively active Rab4 Q72L had no effects on cardiac structure or function, but dominant inhibitor Rab4 S27N impaired responsiveness to endogenous and exogenous catecholamines. To relate betaAR trafficking to diminished cardiac function, Rab4 mutant mice were crossbred with mice overexpressing human beta2AR. In unstimulated beta2AR overexpressors, beta2AR localized to heavier endosomes and translocated to lighter, caveolin-rich fractions after isoproterenol stimulation. Coexpression of beta2AR with activated Rab4 Q72L caused loss of receptors from heavier endosomes while retaining normal inotropy. In contrast, coexpression of beta2AR with inhibitory Rab4 S27N mimicked isoproterenol-induced receptor redistribution to caveolae, with diminished cardiac inotropy. Rab4 inhibition alone prevented resensitization after isoproterenol-induced in vivo adrenergic desensitization. Confocal and ultrastructural analyses revealed bizarre vesicular structures and abnormal accumulation of beta2AR in the sarcoplasm and subsarcollema of Rab4 S27N, but not Q72L, mice. These data provide evidence for constant bidirectional sarcollemal-vesicular betaAR trafficking in the in vivo heart and show that Rab4-mediated recycling of internalized betaAR is necessary for normal cardiac catecholamine responsiveness and resensitization after agonist exposure.
心肌β-肾上腺素能受体(βAR)的儿茶酚胺能激活是调节心脏功能的主要机制。激动剂通过G蛋白偶联受体激酶介导的解偶联和β-抑制蛋白介导的内化使βAR脱敏。尽管抑制心肌G蛋白偶联受体激酶-2可增强心脏功能并逆转心力衰竭,但调节βAR内化/再循环的病理生理效应尚不清楚。我们利用Rab4的突变和转基因表达来研究体内βAR的运输和心脏功能,Rab4可调节七螺旋受体向质膜的囊泡运输。组成型活性Rab4 Q72L的表达对心脏结构或功能没有影响,但显性抑制剂Rab4 S27N损害了对内源性和外源性儿茶酚胺的反应性。为了将βAR运输与心脏功能减弱联系起来,将Rab4突变小鼠与过表达人β2AR的小鼠杂交。在未受刺激的β2AR过表达小鼠中,β2AR定位于较重的内体,异丙肾上腺素刺激后转移至较轻的、富含小窝蛋白的组分。β2AR与活化的Rab4 Q72L共表达导致受体从较重的内体丢失,同时保留正常的心肌收缩力。相反,β2AR与抑制性Rab4 S27N共表达模拟了异丙肾上腺素诱导的受体重新分布到小窝,心肌收缩力减弱。单独抑制Rab4可防止异丙肾上腺素诱导的体内肾上腺素能脱敏后的再敏化。共聚焦和超微结构分析显示,在Rab4 S27N小鼠而非Q72L小鼠的肌浆和肌膜下有奇异的囊泡结构和β2AR的异常积聚。这些数据为体内心脏中持续的双向肌膜-囊泡βAR运输提供了证据,并表明Rab4介导的内化βAR再循环对于正常心脏儿茶酚胺反应性和激动剂暴露后的再敏化是必要的。