Spiro R G
Departments of Biological Chemistry and Medicine, Harvard Medical School and the Joslin Diabetes Center, Boston, Massachusetts 02215, USA.
Cell Mol Life Sci. 2004 May;61(9):1025-41. doi: 10.1007/s00018-004-4037-8.
Misfolded or incompletely assembled multisubunit glycoproteins undergo endoplasmic reticulum-associated degradation (ERAD) regulated in large measure by their N-linked polymannose oligosaccharides. In this quality control system lectin interaction with Glc(3)Man(9)GlcNAc(2) glycans after trimming with endoplasmic reticulum (ER) alpha-glucosidases and alpha-mannosidases sorts out persistently unfolded glycoproteins for N-deglycosylation and proteolytic degradation. Monoglucosylated (Glc(1)Man(9)GlcNAc(2)) glycoproteins take part in the calnexin/calreticulin glucosylation-deglucosylation cycle, while the Man(8)GlcNAc(2) isomer B product of ER mannosidase I interacts with EDEM. Proteasomal degradation requires retrotranslocation into the cytosol through a Sec61 channel and deglycosylation by peptide: N-glycosidase (PNGase); in alternate models both PNGase and proteasomes may be either free in the cytosol or ER membrane-imbedded/attached. Numerous proteins appear to undergo nonproteasomal degradation in which deglycosylation and proteolysis take place in the ER lumen. The released free oligosaccharides (OS) are transported to the cytosol as OS-GlcNAc(2) along with similar components produced by the hydrolytic action of the oligosaccharyltransferase, where they together with OS from the proteasomal pathway are trimmed to Man(5)GlcNAc(1) by the action of cytosolic endo-beta- N-acetylglucosaminidase and alpha-mannosidase before entering the lysosomes. Some misfolded glycoproteins can recycle between the ER, intermediate and Golgi compartments, where they are further processed before ERAD. Moreover, properly folded glycoproteins with mannose-trimmed glycans can be deglucosylated in the Golgi by endomannosidase, thereby releasing calreticulin and permitting formation of complex OS. A number of regulatory controls have been described, including the glucosidase-glucosyltransferase shuttle, which controls the level of Glc(3)Man(9)GlcNAc(2)-P-P-Dol, and the unfolded protein response, which enhances synthesis of components of the quality control system.
错误折叠或组装不完全的多亚基糖蛋白会经历内质网相关降解(ERAD),这在很大程度上受其N - 连接的多聚甘露糖寡糖调控。在这个质量控制系统中,在内质网(ER)α - 葡萄糖苷酶和α - 甘露糖苷酶修剪后,凝集素与Glc(3)Man(9)GlcNAc(2)聚糖相互作用,筛选出持续未折叠的糖蛋白进行N - 去糖基化和蛋白水解降解。单葡萄糖基化(Glc(1)Man(9)GlcNAc(2))糖蛋白参与钙连蛋白/钙网蛋白的糖基化 - 去糖基化循环,而ER甘露糖苷酶I的Man(8)GlcNAc(2)异构体B产物与EDEM相互作用。蛋白酶体降解需要通过Sec61通道逆向转运到细胞质中,并由肽:N - 糖苷酶(PNGase)进行去糖基化;在其他模型中,PNGase和蛋白酶体可能游离于细胞质中,也可能嵌入/附着在内质网膜上。许多蛋白质似乎会经历非蛋白酶体降解,其中去糖基化和蛋白水解发生在内质网腔中。释放的游离寡糖(OS)作为OS - GlcNAc(2)与寡糖基转移酶水解作用产生的类似成分一起转运到细胞质中,在那里它们与蛋白酶体途径产生的OS一起在细胞质内β - N - 乙酰葡糖胺酶和α - 甘露糖苷酶的作用下被修剪为Man(5)GlcNAc(1),然后进入溶酶体。一些错误折叠的糖蛋白可以在内质网、中间高尔基体和高尔基体区室之间循环,在那里它们在ERAD之前会进一步加工。此外,具有甘露糖修剪聚糖的正确折叠糖蛋白可以在高尔基体中被内切甘露糖苷酶去糖基化,从而释放钙网蛋白并允许形成复杂的OS。已经描述了许多调控机制,包括控制Glc(3)Man(9)GlcNAc(2)-P - P - Dol水平的葡萄糖苷酶 - 葡萄糖基转移酶穿梭机制,以及增强质量控制系统成分合成的未折叠蛋白反应。