Wang Jiahai, Tang Zheng, Wang Ronglong
Faculty of Engineering, Toyama University, Toyama-shi 930-8555, Japan.
Int J Neural Syst. 2004 Apr;14(2):107-16. doi: 10.1142/S0129065704001917.
In this paper, based on maximum neural network, we propose a new parallel algorithm that can help the maximum neural network escape from local minima by including a transient chaotic neurodynamics for bipartite subgraph problem. The goal of the bipartite subgraph problem, which is an NP- complete problem, is to remove the minimum number of edges in a given graph such that the remaining graph is a bipartite graph. Lee et al. presented a parallel algorithm using the maximum neural model (winner-take-all neuron model) for this NP- complete problem. The maximum neural model always guarantees a valid solution and greatly reduces the search space without a burden on the parameter-tuning. However, the model has a tendency to converge to a local minimum easily because it is based on the steepest descent method. By adding a negative self-feedback to the maximum neural network, we proposed a new parallel algorithm that introduces richer and more flexible chaotic dynamics and can prevent the network from getting stuck at local minima. After the chaotic dynamics vanishes, the proposed algorithm is then fundamentally reined by the gradient descent dynamics and usually converges to a stable equilibrium point. The proposed algorithm has the advantages of both the maximum neural network and the chaotic neurodynamics. A large number of instances have been simulated to verify the proposed algorithm. The simulation results show that our algorithm finds the optimum or near-optimum solution for the bipartite subgraph problem superior to that of the best existing parallel algorithms.
在本文中,基于最大神经网络,我们提出了一种新的并行算法,该算法通过引入用于二分图问题的瞬态混沌神经动力学,帮助最大神经网络逃离局部最小值。二分图问题是一个NP完全问题,其目标是在给定图中去除最少数量的边,使得剩余的图是一个二分图。Lee等人针对这个NP完全问题提出了一种使用最大神经模型(胜者全得神经元模型)的并行算法。最大神经模型总能保证得到一个有效的解,并且在无需参数调整负担的情况下极大地减少了搜索空间。然而,该模型容易收敛到局部最小值,因为它基于最速下降法。通过向最大神经网络添加负自反馈,我们提出了一种新的并行算法,该算法引入了更丰富、更灵活的混沌动力学,并且可以防止网络陷入局部最小值。在混沌动力学消失后,所提出的算法随后从根本上由梯度下降动力学控制,并且通常会收敛到一个稳定平衡点。所提出的算法兼具最大神经网络和混沌神经动力学的优点。已经对大量实例进行了模拟,以验证所提出的算法。模拟结果表明,我们的算法为二分图问题找到的最优解或近似最优解优于现有的最佳并行算法。