Suppr超能文献

基于神经网络观测器的离散时间混沌系统新型同步方法

Novel synchronization of discrete-time chaotic systems using neural network observer.

作者信息

Naghavi S V, Safavi A A

机构信息

Department of Electrical Engineering, School of Engineering, Shiraz University, Shiraz, Iran.

出版信息

Chaos. 2008 Sep;18(3):033110. doi: 10.1063/1.2959140.

Abstract

This paper presents a new approach to solve the synchronization problem of a large class of discrete chaotic systems. The chaotic systems can be reformulated as an appropriate class of linear parameter varying (LPV) systems. The synchronization problem for this class of nonlinear systems is revisited from a control perspective and it is argued that the problem can be viewed as an observer design problem. Then, based on the LPV representation, a neural network observer-based approach is proposed to solve the synchronization problem. The simulation results show the advantages of combining the LPV techniques and the neural networks to determine the appropriate observer gain within the context of chaotic system synchronization.

摘要

本文提出了一种解决一大类离散混沌系统同步问题的新方法。混沌系统可重新表述为一类合适的线性参数变化(LPV)系统。从控制角度重新审视了这类非线性系统的同步问题,并认为该问题可视为一个观测器设计问题。然后,基于LPV表示,提出了一种基于神经网络观测器的方法来解决同步问题。仿真结果表明了在混沌系统同步背景下结合LPV技术和神经网络来确定合适观测器增益的优势。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验