Suppr超能文献

Perfluorocarbon emulsion improves cerebral oxygenation and mitochondrial function after fluid percussion brain injury in rats.

作者信息

Daugherty Wilson P, Levasseur Joseph E, Sun Dong, Spiess Bruce D, Bullock M Ross

机构信息

Departments of Neurosurgery and Physiology, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia 23298, USA.

出版信息

Neurosurgery. 2004 May;54(5):1223-30; discussion 1230. doi: 10.1227/01.neu.0000119238.68938.5d.

Abstract

OBJECTIVE

Cerebral ischemia is a common secondary sequela of traumatic brain injury (TBI). Experimental models of stroke have demonstrated reductions in ischemia after perfluorocarbon (PFC) administration; however, there are no published reports of PFC efficacy after TBI. The current study analyzed the effect of the PFC emulsion Oxygent (AF0144; Alliance Pharmaceutical Corp., San Diego, CA) on cerebral oxygenation, mitochondrial redox potential, and free radical formation after lateral fluid percussion injury.

METHODS

After fluid percussion injury, five 2.25 ml/kg doses of PFC or saline were administered to rats breathing 100% O(2), and oxygen tension was recorded. In a second experiment, a single bolus (11.25 ml/kg) of PFC or saline was given after injury, and redox potential and free radical formation were measured at 1 or 4 hours with Alamar blue dye and dihydrorhodamine 123, respectively.

RESULTS

Cerebral oxygen tension was significantly increased in both injured and sham animals treated with 11.25 ml/kg of PFC as compared with saline (P < 0.05). Likewise, PFC significantly increased mitochondrial redox potential as compared with saline at 4 hours after injury (P < 0.01). Mitochondrial peroxynitrite and peroxide production also increased with the administration of PFC (P < 0.05).

CONCLUSION

The current study demonstrates that a PFC emulsion can significantly increase cerebral oxygenation after TBI and enhance mitochondrial function at 4 hours after injury as compared with saline. This study demonstrates a new therapeutic potential for PFC to enhance cerebral oxygenation and aerobic metabolism after TBI. However, the increased free radical formation with high-dose PFCs suggests the need for further studies combining PFCs with free radical scavengers.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验