Bittker Joshua A, Le Brian V, Liu Jane M, Liu David R
Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 01238, USA.
Proc Natl Acad Sci U S A. 2004 May 4;101(18):7011-6. doi: 10.1073/pnas.0402202101. Epub 2004 Apr 26.
We recently reported the development of nonhomologous random recombination (NRR) as a method for nucleic acid diversification and applied NRR to the evolution of DNA aptamers. Here, we describe a modified method, protein NRR, that enables proteins to access diversity previously difficult or impossible to generate. We investigated the structural plasticity of protein folds and the ability of helical motifs to function in different contexts by applying protein NRR and in vivo selection to the evolution of chorismate mutase (CM) enzymes. Functional CM mutants evolved using protein NRR contained many insertions, deletions, and rearrangements. The distribution of these changes was not random but clustered in certain regions of the protein. Topologically rearranged but functional enzymes also emerged from these studies, indicating that multiple connectivities can accommodate a functional CM active site and demonstrating the ability to generate new domain connectivities through protein NRR. Protein NRR was also used to randomly recombine CM and fumarase, an unrelated but also alpha-helical protein. Whereas the resulting library contained fumarase fragments in many contexts before functional selection, library members surviving selection for CM activity invariably contained a CM core with fumarase sequences found only at the termini or in one loop. These results imply that internal helical fragments cannot be swapped between these proteins without the loss of nearly all CM activity. Our findings suggest that protein NRR will be useful in probing the functional requirements of enzymes and in the creation of new protein topologies.
我们最近报道了非同源随机重组(NRR)作为一种核酸多样化方法的发展,并将NRR应用于DNA适配体的进化。在此,我们描述了一种改进的方法——蛋白质NRR,它能使蛋白质获得以前难以或无法产生的多样性。我们通过将蛋白质NRR和体内筛选应用于分支酸变位酶(CM)的进化,研究了蛋白质折叠的结构可塑性以及螺旋基序在不同环境中发挥功能的能力。使用蛋白质NRR进化出的功能性CM突变体包含许多插入、缺失和重排。这些变化的分布并非随机,而是聚集在蛋白质的某些区域。拓扑结构重排但仍具功能的酶也从这些研究中出现,这表明多种连接方式可以容纳功能性CM活性位点,并证明了通过蛋白质NRR产生新结构域连接方式的能力。蛋白质NRR还被用于随机重组CM和延胡索酸酶(一种不相关但也是α螺旋结构的蛋白质)。在功能筛选之前,所得文库在许多情况下都包含延胡索酸酶片段,但在筛选CM活性后存活下来的文库成员总是包含一个CM核心,其中延胡索酸酶序列仅在末端或一个环中发现。这些结果表明,内部螺旋片段在这些蛋白质之间不能互换,否则几乎会丧失所有CM活性。我们的研究结果表明,蛋白质NRR将有助于探究酶的功能需求以及创造新的蛋白质拓扑结构。