Bratulic Sinisa, Badran Ahmed H
Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
Curr Opin Chem Biol. 2017 Dec;41:50-60. doi: 10.1016/j.cbpa.2017.10.010. Epub 2017 Nov 2.
Genetic variation fuels Darwinian evolution, yet spontaneous mutation rates are maintained at low levels to ensure cellular viability. Low mutation rates preclude the exhaustive exploration of sequence space for protein evolution and genome engineering applications, prompting scientists to develop methods for efficient and targeted diversification of nucleic acid sequences. Directed evolution of biomolecules relies upon the generation of unbiased genetic diversity to discover variants with desirable properties, whereas genome-engineering applications require selective modifications on a genomic scale with minimal off-targets. Here, we review the current toolkit of mutagenesis strategies employed in directed evolution and genome engineering. These state-of-the-art methods enable facile modifications and improvements of single genes, multicomponent pathways, and whole genomes for basic and applied research, while simultaneously paving the way for genome editing therapeutic interventions.
遗传变异推动了达尔文式进化,然而自发突变率维持在较低水平以确保细胞的生存能力。低突变率阻碍了对蛋白质进化和基因组工程应用中序列空间的详尽探索,促使科学家们开发出用于核酸序列高效且有针对性多样化的方法。生物分子的定向进化依赖于产生无偏向的遗传多样性以发现具有理想特性的变体,而基因组工程应用则需要在基因组规模上进行选择性修饰且脱靶效应最小。在此,我们综述了在定向进化和基因组工程中所采用的诱变策略的当前工具集。这些最先进的方法能够对单基因、多组分途径和全基因组进行便捷的修饰与改进,以用于基础研究和应用研究,同时也为基因组编辑治疗干预铺平了道路。