Suppr超能文献

大肠杆菌中通过一种依赖于Fnr的二羧酸摄取系统进行的厌氧富马酸转运,该系统不同于需氧二羧酸摄取系统。

Anaerobic fumarate transport in Escherichia coli by an fnr-dependent dicarboxylate uptake system which is different from the aerobic dicarboxylate uptake system.

作者信息

Engel P, Krämer R, Unden G

机构信息

Institut für Biochemie, Heinrich Heine-Universität Düsseldorf, Germany.

出版信息

J Bacteriol. 1992 Sep;174(17):5533-9. doi: 10.1128/jb.174.17.5533-5539.1992.

Abstract

Escherichia coli grown anaerobically with fumarate as electron acceptor is able to take up C4-dicarboxylates by a specific transport system. The system differs in all tested parameters from the known aerobic C4-dicarboxylate transporter. The anaerobic transport system shows higher transport rates (95 mumol/g [dry weight] per min versus 30 mumol/g/min) and higher Kms (400 versus 30 microM) for fumarate than for the aerobic system. Mutants lacking the aerobic dicarboxylate uptake system are able to grow anaerobically at the expense of fumarate respiration and transport dicarboxylates with wild-type rates after anaerobic but not after aerobic growth. Transport by the anaerobic system is stimulated by preloading the bacteria with dicarboxylates. The anaerobic transport system catalyzes homologous and heterologous antiport of dicarboxylates, whereas the aerobic system operates only in the unidirectional mode. The anaerobic antiport is measurable only in anaerobically grown bacteria with fnr+ backgrounds. Additionally, the system is inhibited by incubation of resting bacteria with physiological electron acceptors such as O2, nitrate, dimethyl sulfoxide, and fumarate. The inhibition is reversed by the presence of reducing agents. It is suggested that the physiological role of the system is a fumarate/succinate antiport under conditions of fumarate respiration.

摘要

以富马酸作为电子受体进行厌氧培养的大肠杆菌,能够通过特定的转运系统摄取C4 - 二羧酸。该系统在所有测试参数方面均与已知的需氧C4 - 二羧酸转运体不同。厌氧转运系统对富马酸的转运速率(95 μmol/g[干重]每分钟,而需氧系统为30 μmol/g/分钟)和Km值(400 μM对30 μM)均高于需氧系统。缺乏需氧二羧酸摄取系统的突变体能够以富马酸呼吸为代价进行厌氧生长,并且在厌氧生长后而非需氧生长后能够以野生型速率转运二羧酸。通过用二羧酸预加载细菌可刺激厌氧系统的转运。厌氧转运系统催化二羧酸的同源和异源反向转运,而需氧系统仅以单向模式运行。厌氧反向转运仅在具有fnr +背景的厌氧生长细菌中可测量。此外,通过将静止细菌与生理电子受体如O2、硝酸盐、二甲基亚砜和富马酸一起孵育可抑制该系统。还原剂的存在可逆转这种抑制作用。有人认为该系统的生理作用是在富马酸呼吸条件下进行富马酸/琥珀酸反向转运。

相似文献

2
A Na+-coupled C4-dicarboxylate transporter (Asuc_0304) and aerobic growth of Actinobacillus succinogenes on C4-dicarboxylates.
Microbiology (Reading). 2014 Jul;160(Pt 7):1533-1544. doi: 10.1099/mic.0.076786-0. Epub 2014 Apr 17.
4
C4-Dicarboxylate Utilization in Aerobic and Anaerobic Growth.
EcoSal Plus. 2016 Jun;7(1). doi: 10.1128/ecosalplus.ESP-0021-2015.
5
Transport of C(4)-dicarboxylates in Wolinella succinogenes.
J Bacteriol. 2000 Oct;182(20):5757-64. doi: 10.1128/JB.182.20.5757-5764.2000.
6
Fumarate dependent protein composition under aerobic and anaerobic growth conditions in Escherichia coli.
J Proteomics. 2020 Feb 10;212:103583. doi: 10.1016/j.jprot.2019.103583. Epub 2019 Nov 14.
7
Inactivation and regulation of the aerobic C(4)-dicarboxylate transport (dctA) gene of Escherichia coli.
J Bacteriol. 1999 Sep;181(18):5624-35. doi: 10.1128/JB.181.18.5624-5635.1999.
8
Transcriptome analysis and anaerobic C -dicarboxylate transport in Actinobacillus succinogenes.
Microbiologyopen. 2018 Jun;7(3):e00565. doi: 10.1002/mbo3.565. Epub 2017 Dec 12.
10
Asuc_0142 of 130Z is the l-aspartate/C4-dicarboxylate exchanger DcuA.
Microbiology (Reading). 2023 Oct;169(10). doi: 10.1099/mic.0.001411.

引用本文的文献

2
A steady-state model of microbial acclimation to substrate limitation.
PLoS Comput Biol. 2020 Aug 26;16(8):e1008140. doi: 10.1371/journal.pcbi.1008140. eCollection 2020 Aug.
3
Import of Aspartate and Malate by DcuABC Drives H/Fumarate Respiration to Promote Initial Salmonella Gut-Lumen Colonization in Mice.
Cell Host Microbe. 2020 Jun 10;27(6):922-936.e6. doi: 10.1016/j.chom.2020.04.013. Epub 2020 May 15.
4
Non-pathogenic Escherichia coli biofilms: effects of growth conditions and surface properties on structure and curli gene expression.
Arch Microbiol. 2020 Aug;202(6):1517-1527. doi: 10.1007/s00203-020-01864-5. Epub 2020 Mar 28.
5
Characterizing and ranking computed metabolic engineering strategies.
Bioinformatics. 2019 Sep 1;35(17):3063-3072. doi: 10.1093/bioinformatics/bty1065.
7
C4-Dicarboxylate Utilization in Aerobic and Anaerobic Growth.
EcoSal Plus. 2016 Jun;7(1). doi: 10.1128/ecosalplus.ESP-0021-2015.
9
The L-tartrate/succinate antiporter TtdT (YgjE) of L-tartrate fermentation in Escherichia coli.
J Bacteriol. 2007 Mar;189(5):1597-603. doi: 10.1128/JB.01402-06. Epub 2006 Dec 15.
10
Campylobacter jejuni gene expression in the chick cecum: evidence for adaptation to a low-oxygen environment.
Infect Immun. 2005 Aug;73(8):5278-85. doi: 10.1128/IAI.73.8.5278-5285.2005.

本文引用的文献

3
A hypothesis for the role of dithiol-disulfide interchange in solute transport and energy-transducing processes.
Eur J Biochem. 1982 Oct;127(3):597-604. doi: 10.1111/j.1432-1033.1982.tb06914.x.
5
The uptake of C4-dicarboxylic acids by Escherichia coli.
Eur J Biochem. 1971 Jan;18(2):274-81. doi: 10.1111/j.1432-1033.1971.tb01240.x.
6
Two aspartate transport systems in Escherichia coli.
J Biol Chem. 1971 Dec 10;246(23):7373-82.
9
Role of malolactic fermentation in lactic acid bacteria.
Biochimie. 1988 Mar;70(3):375-9. doi: 10.1016/0300-9084(88)90210-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验