Suppr超能文献

大肠杆菌中L-酒石酸发酵的L-酒石酸盐/琥珀酸盐反向转运蛋白TtdT(YgjE)

The L-tartrate/succinate antiporter TtdT (YgjE) of L-tartrate fermentation in Escherichia coli.

作者信息

Kim Ok Bin, Unden Gottfried

机构信息

Institut für Mikrobiologie und Weinforschung, Johannes Gutenberg-Universität Mainz, Becherweg 15, 55099 Mainz, Germany.

出版信息

J Bacteriol. 2007 Mar;189(5):1597-603. doi: 10.1128/JB.01402-06. Epub 2006 Dec 15.

Abstract

Escherichia coli ferments L-tartrate under anaerobic conditions in the presence of an additional electron donor to succinate. The carrier for L-tartrate uptake and succinate export and its relation to the general C(4)-dicarboxylate carriers DcuA, DcuB, and DcuC were studied. The secondary carrier TtdT, encoded by the ttdT (previously called ygjE) gene, is required for the uptake of L-tartrate. The ttdT gene is located downstream of the ttdA and ttdB genes, encoding the L-tartrate dehydratase TtdAB. Analysis of mRNA by reverse transcription-PCR showed that ttdA, ttdB, and ttdT are cotranscribed. Deletion of ttdT abolished growth by L-tartrate and degradation of L-tartrate completely. Bacteria containing TtdT catalyze L-tartrate or succinate uptake and specific heterologous L-tartrate/succinate antiporting. D-Tartrate is not a substrate for TtdT. TtdT operates preferentially in the direction of tartrate uptake and succinate excretion. The Dcu carriers do not support anaerobic growth on L-tartrate or L-tartrate transport. TtdT is related in sequence and function to CitT, which catalyzes heterologous citrate/succinate antiporting in citrate fermentation.

摘要

在厌氧条件下,大肠杆菌在存在额外电子供体生成琥珀酸的情况下发酵L-酒石酸盐。研究了L-酒石酸盐摄取和琥珀酸输出的载体及其与通用C(4)-二羧酸载体DcuA、DcuB和DcuC的关系。由ttdT(以前称为ygjE)基因编码的二级载体TtdT是L-酒石酸盐摄取所必需的。ttdT基因位于编码L-酒石酸脱水酶TtdAB的ttdA和ttdB基因的下游。通过逆转录PCR对mRNA的分析表明,ttdA、ttdB和ttdT是共转录的。ttdT的缺失完全消除了L-酒石酸盐的生长和L-酒石酸盐的降解。含有TtdT的细菌催化L-酒石酸盐或琥珀酸的摄取以及特定的异源L-酒石酸盐/琥珀酸反向转运。D-酒石酸盐不是TtdT的底物。TtdT优先在酒石酸盐摄取和琥珀酸排泄的方向上起作用。Dcu载体不支持在L-酒石酸盐上的厌氧生长或L-酒石酸盐的运输。TtdT在序列和功能上与CitT相关,CitT在柠檬酸盐发酵中催化异源柠檬酸盐/琥珀酸反向转运。

相似文献

1
The L-tartrate/succinate antiporter TtdT (YgjE) of L-tartrate fermentation in Escherichia coli.
J Bacteriol. 2007 Mar;189(5):1597-603. doi: 10.1128/JB.01402-06. Epub 2006 Dec 15.
4
Regulation of tartrate metabolism by TtdR and relation to the DcuS-DcuR-regulated C4-dicarboxylate metabolism of Escherichia coli.
Microbiology (Reading). 2009 Nov;155(Pt 11):3632-3640. doi: 10.1099/mic.0.031401-0. Epub 2009 Aug 6.
6
Functional identification of ygiP as a positive regulator of the ttdA-ttdB-ygjE operon.
Microbiology (Reading). 2006 Jul;152(Pt 7):2129-2135. doi: 10.1099/mic.0.28753-0.
7
Identification of major malate export systems in an engineered malate-producing Escherichia coli aided by substrate similarity search.
Appl Microbiol Biotechnol. 2019 Nov;103(21-22):9001-9011. doi: 10.1007/s00253-019-10164-y. Epub 2019 Oct 22.

引用本文的文献

1
Infection-associated gene regulation of L-tartrate metabolism in serovar Typhimurium.
mBio. 2024 Jun 12;15(6):e0035024. doi: 10.1128/mbio.00350-24. Epub 2024 Apr 29.
2
Asuc_0142 of 130Z is the l-aspartate/C4-dicarboxylate exchanger DcuA.
Microbiology (Reading). 2023 Oct;169(10). doi: 10.1099/mic.0.001411.
4
Structural basis of ion - substrate coupling in the Na-dependent dicarboxylate transporter VcINDY.
Nat Commun. 2022 May 12;13(1):2644. doi: 10.1038/s41467-022-30406-4.
7
Structural basis for the reaction cycle of DASS dicarboxylate transporters.
Elife. 2020 Sep 1;9:e61350. doi: 10.7554/eLife.61350.
9
Sulfate Transporters in Dissimilatory Sulfate Reducing Microorganisms: A Comparative Genomics Analysis.
Front Microbiol. 2018 Mar 2;9:309. doi: 10.3389/fmicb.2018.00309. eCollection 2018.
10
Transcriptome analysis and anaerobic C -dicarboxylate transport in Actinobacillus succinogenes.
Microbiologyopen. 2018 Jun;7(3):e00565. doi: 10.1002/mbo3.565. Epub 2017 Dec 12.

本文引用的文献

1
C4-Dicarboxylate Degradation in Aerobic and Anaerobic Growth.
EcoSal Plus. 2004 Dec;1(1). doi: 10.1128/ecosalplus.3.4.5.
2
Functional identification of ygiP as a positive regulator of the ttdA-ttdB-ygjE operon.
Microbiology (Reading). 2006 Jul;152(Pt 7):2129-2135. doi: 10.1099/mic.0.28753-0.
3
Decomposition of Tartrates by the Coliform Bacteria.
J Bacteriol. 1946 Sep;52(3):311-25.
4
The nature of the stimulus and of the fumarate binding site of the fumarate sensor DcuS of Escherichia coli.
J Biol Chem. 2005 May 27;280(21):20596-603. doi: 10.1074/jbc.M502015200. Epub 2005 Mar 21.
5
The ion transporter superfamily.
Biochim Biophys Acta. 2003 Dec 3;1618(1):79-92. doi: 10.1016/j.bbamem.2003.10.010.
6
PRODORIC: prokaryotic database of gene regulation.
Nucleic Acids Res. 2003 Jan 1;31(1):266-9. doi: 10.1093/nar/gkg037.
7
LrhA as a new transcriptional key regulator of flagella, motility and chemotaxis genes in Escherichia coli.
Mol Microbiol. 2002 Jul;45(2):521-32. doi: 10.1046/j.1365-2958.2002.03032.x.
8
C4-dicarboxylate carriers and sensors in bacteria.
Biochim Biophys Acta. 2002 Jan 17;1553(1-2):39-56. doi: 10.1016/s0005-2728(01)00233-x.
10
One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products.
Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6640-5. doi: 10.1073/pnas.120163297.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验