Milani Mario, Ouellet Yannick, Ouellet Hugues, Guertin Michel, Boffi Alberto, Antonini Giovanni, Bocedi Alessio, Mattu Marco, Bolognesi Martino, Ascenzi Paolo
Istituto Giannina Gaslini, Largo G. Gaslini, 5. 16147 Genova, Italy.
Biochemistry. 2004 May 11;43(18):5213-21. doi: 10.1021/bi049870+.
Cyanide is one of the few diatomic ligands able to interact with the ferric and ferrous heme-Fe atom. Here, the X-ray crystal structure of the cyanide derivative of ferric Mycobacterium tuberculosis truncated hemoglobin-N (M. tuberculosis trHbN) has been determined at 2.0 A (R-general = 17.8% and R-free = 23.5%), and analyzed in parallel with those of M. tuberculosis truncated hemoglobin-O (M. tuberculosis trHbO), Chlamydomonas eugametos truncated hemoglobin (C. eugametos trHb), and sperm whale myoglobin, generally taken as a molecular model. Cyanide binding to M. tuberculosis trHbN is stabilized directly by residue TyrB10(33), which may assist the deprotonation of the incoming ligand and the protonation of the outcoming cyanide. In M. tuberculosis trHbO and in C. eugametos trHb the ligand is stabilized by the distal pocket residues TyrCD1(36) and TrpG8(88), and by the TyrB10(20) - GlnE7(41) - GlnE11(45) triad, respectively. Moreover, kinetics for cyanide binding to ferric M. tuberculosis trHbN and trHbO and C. eugametos trHb, for ligand dissociation from the ferrous trHbs, and for the reduction of the heme-Fe(III)-cyanide complex have been determined, at pH 7.0 and 20.0 degrees C. Despite the different heme distal site structures and ligand interactions, values of the rate constant for cyanide binding to ferric (non)vertebrate heme proteins are similar, being influenced mainly by the presence in the heme pocket of proton acceptor group(s), whose function is to assist the deprotonation of the incoming ligand (i.e., HCN). On the other hand, values of the rate constant for the reduction of the heme-Fe(III)-cyanide (non)vertebrate globins span over several orders of magnitude, reflecting the different ability of the heme proteins considered to give productive complex(es) with dithionite or its reducing species SO(2)(-). Furthermore, values of the rate constant for ligand dissociation from heme-Fe(II)-cyanide (non)vertebrate heme proteins are very different, reflecting the different nature and geometry of the heme distal residue(s) hydrogen-bonded to the heme-bound cyanide.
氰化物是少数能够与高铁和亚铁血红素 - Fe原子相互作用的双原子配体之一。在此,已确定了结核分枝杆菌截短血红蛋白 - N(M. tuberculosis trHbN)氰化物衍生物的X射线晶体结构,分辨率为2.0 Å(R - general = 17.8%,R - free = 23.5%),并与结核分枝杆菌截短血红蛋白 - O(M. tuberculosis trHbO)、衣藻(C. eugametos)截短血红蛋白(C. eugametos trHb)以及通常作为分子模型的抹香鲸肌红蛋白的结构进行了平行分析。氰化物与M. tuberculosis trHbN的结合直接由残基TyrB10(33)稳定,该残基可能有助于进入配体的去质子化和离去氰化物的质子化。在M. tuberculosis trHbO和C. eugametos trHb中,配体分别由远端口袋残基TyrCD1(36)和TrpG8(88)以及TyrB10(20) - GlnE7(41) - GlnE11(45)三联体稳定。此外,已测定了在pH 7.0和20.0℃下氰化物与高铁M. tuberculosis trHbN、trHbO和C. eugametos trHb的结合动力学、配体从亚铁截短血红蛋白的解离动力学以及血红素 - Fe(III)-氰化物复合物的还原动力学。尽管血红素远端位点结构和配体相互作用不同,但氰化物与高铁(非)脊椎动物血红素蛋白结合的速率常数相似,主要受血红素口袋中质子受体基团的影响,其作用是协助进入配体(即HCN)的去质子化。另一方面,血红素 - Fe(III)-氰化物(非)脊椎动物球蛋白还原的速率常数跨越几个数量级,反映了所考虑的血红素蛋白与连二亚硫酸盐或其还原物种SO(2)(-)形成有效复合物的不同能力。此外,配体从血红素 - Fe(II)-氰化物(非)脊椎动物血红素蛋白解离的速率常数差异很大,反映了与血红素结合的氰化物形成氢键的血红素远端残基的不同性质和几何结构。