João Saraiva Maria, Mendes Sousa Mónica, Cardoso Isabel, Fernandes Rui
Molecular Neurobiology, Instituto de Biologia Molecular e Celular, University of Porto, Portugal.
J Mol Neurosci. 2004;23(1-2):35-40. doi: 10.1385/jmn:23:1-2:035.
The molecular pathology underlying transthyretin (TTR)-related amyloidosis is largely unknown. It is possible that a common factor in the amyloidogenesis process exists among the different forms; this common factor can involve changes produced by mutations in the three-dimensional structure of TTR, rendering it prone to deposition as amyloid. This amyloidogenic potential, together with other yet unidentified factors, contribute to amyloid deposition. The factors that trigger fibril formation and/or neurodegeneration in TTR-related amyloidosis present central questions for which there are still no available clues. We recently showed in vitro that TTR fibrils trigger NF-kappaB activation, and subsequent studies identified some inflammatory and apoptotic pathways opening perspectives to understand the neurodegeneration process in familial amyloidotic polyneuropathy (FAP). It is current opinion that the modified TTR represents an amyloidogenic intermediate, which integrates the fibril structure; analyses of FAP fibrils have proved that TTR in the fibrils maintains a beta-conformation and have suggested that the TTR monomer is the building block in fibrils. This concept has been questioned recently by investigators, and only future studies on native and synthetic TTR fibrils using high-resolution structural techniques will further elucidate fibril structure and the aggregation pathway. Modulators responsible for phenotypic diversity can be addressed by mice transgenic for different human TTR mutations. Different lines are now available; incomplete penetrance and environmental influence on the deposition of mutant TTR has been observed. Therefore, these animals constitute important tools to address modulators of phenotypic expression and pathophysiological consequences of amyloid deposition at cellular/molecular levels. They are pivotal for testing potential drugs for TTR amyloidosis as well.
甲状腺素运载蛋白(TTR)相关淀粉样变性的分子病理学在很大程度上尚不明确。在不同形式的淀粉样变性过程中,可能存在一个共同因素;这个共同因素可能涉及TTR三维结构突变所产生的变化,使其易于以淀粉样蛋白形式沉积。这种淀粉样变性潜能,连同其他尚未明确的因素,促成了淀粉样蛋白沉积。在TTR相关淀粉样变性中触发纤维形成和/或神经变性的因素是核心问题,目前仍没有相关线索。我们最近在体外实验中发现TTR纤维可触发核因子-κB激活,随后的研究确定了一些炎症和凋亡途径,为理解家族性淀粉样多神经病(FAP)中的神经变性过程开辟了新视角。目前认为,修饰后的TTR代表一种整合到纤维结构中的淀粉样变性中间体;对FAP纤维的分析证明,纤维中的TTR保持β构象,并表明TTR单体是纤维的构建单元。最近,这一概念受到了研究人员的质疑,只有未来使用高分辨率结构技术对天然和合成TTR纤维进行研究,才能进一步阐明纤维结构和聚集途径。负责表型多样性的调节因子可以通过转染不同人类TTR突变基因的小鼠来研究。现在已有不同品系;已观察到突变型TTR沉积存在不完全显性和环境影响。因此,这些动物是在细胞/分子水平上研究表型表达调节因子和淀粉样蛋白沉积病理生理后果的重要工具。它们对于测试TTR淀粉样变性的潜在药物也至关重要。