Suppr超能文献

以硫化物作为电子供体的异化型砷酸盐还原:单湖湖水实验及化学自养型砷酸盐呼吸菌菌株MLMS-1的分离

Dissimilatory arsenate reduction with sulfide as electron donor: experiments with mono lake water and Isolation of strain MLMS-1, a chemoautotrophic arsenate respirer.

作者信息

Hoeft Shelley E, Kulp Thomas R, Stolz John F, Hollibaugh James T, Oremland Ronald S

机构信息

U.S. Geological Survey, Menlo Park, California 94025, USA.

出版信息

Appl Environ Microbiol. 2004 May;70(5):2741-7. doi: 10.1128/AEM.70.5.2741-2747.2004.

Abstract

Anoxic bottom water from Mono Lake, California, can biologically reduce added arsenate without any addition of electron donors. Of the possible in situ inorganic electron donors present, only sulfide was sufficiently abundant to drive this reaction. We tested the ability of sulfide to serve as an electron donor for arsenate reduction in experiments with lake water. Reduction of arsenate to arsenite occurred simultaneously with the removal of sulfide. No loss of sulfide occurred in controls without arsenate or in sterilized samples containing both arsenate and sulfide. The rate of arsenate reduction in lake water was dependent on the amount of available arsenate. We enriched for a bacterium that could achieve growth with sulfide and arsenate in a defined, mineral medium and purified it by serial dilution. The isolate, strain MLMS-1, is a gram-negative, motile curved rod that grows by oxidizing sulfide to sulfate while reducing arsenate to arsenite. Chemoautotrophy was confirmed by the incorporation of H(14)CO(3)(-) into dark-incubated cells, but preliminary gene probing tests with primers for ribulose-1,5-biphosphate carboxylase/oxygenase did not yield PCR-amplified products. Alignment of 16S rRNA sequences indicated that strain MLMS-1 was in the delta-Proteobacteria, located near sulfate reducers like Desulfobulbus sp. (88 to 90% similarity) but more closely related (97%) to unidentified sequences amplified previously from Mono Lake. However, strain MLMS-1 does not grow with sulfate as its electron acceptor.

摘要

加利福尼亚州莫诺湖的缺氧底层水能够在不添加任何电子供体的情况下对添加的砷酸盐进行生物还原。在所存在的可能的原位无机电子供体中,只有硫化物含量足够丰富,能够驱动这一反应。我们在湖水实验中测试了硫化物作为砷酸盐还原电子供体的能力。砷酸盐还原为亚砷酸盐的过程与硫化物的去除同时发生。在没有砷酸盐的对照实验中,或者在同时含有砷酸盐和硫化物的灭菌样品中,均未出现硫化物损失的情况。湖水中砷酸盐的还原速率取决于可利用的砷酸盐的量。我们在一种特定的矿物培养基中富集培养出了一种能够利用硫化物和砷酸盐实现生长的细菌,并通过连续稀释对其进行了纯化。分离出的菌株MLMS-1是一种革兰氏阴性、具鞭毛的弯曲杆菌,它通过将硫化物氧化为硫酸盐,同时将砷酸盐还原为亚砷酸盐来生长。通过将H(14)CO(3)(-)掺入暗培养细胞中证实了化学自养,但用核酮糖-1,5-二磷酸羧化酶/加氧酶引物进行的初步基因探测试验未产生PCR扩增产物。16S rRNA序列比对表明,菌株MLMS-1属于δ-变形菌纲,位于像脱硫球茎菌属(相似性为88%至90%)这样的硫酸盐还原菌附近,但与之前从莫诺湖扩增出的未鉴定序列关系更为密切(97%)。然而,菌株MLMS-1不能以硫酸盐作为电子受体进行生长。

相似文献

2
Sulfide oxidation coupled to arsenate reduction by a diverse microbial community in a soda lake.
Appl Environ Microbiol. 2006 Mar;72(3):2043-9. doi: 10.1128/AEM.72.3.2043-2049.2006.
3
Selenate-dependent anaerobic arsenite oxidation by a bacterium from Mono Lake, California.
Appl Environ Microbiol. 2008 May;74(9):2588-94. doi: 10.1128/AEM.01995-07. Epub 2008 Mar 7.
4
Anaerobic oxidation of arsenite in Mono Lake water and by a facultative, arsenite-oxidizing chemoautotroph, strain MLHE-1.
Appl Environ Microbiol. 2002 Oct;68(10):4795-802. doi: 10.1128/AEM.68.10.4795-4802.2002.
5
Anaerobic Chemolithotrophic Growth of the Haloalkaliphilic Bacterium Strain MLMS-1 by Disproportionation of Monothioarsenate.
Environ Sci Technol. 2015 Jun 2;49(11):6554-63. doi: 10.1021/acs.est.5b01165. Epub 2015 May 21.
7
Potential sulfur metabolisms and associated bacteria within anoxic surface sediment from saline meromictic Lake Kaiike (Japan).
FEMS Microbiol Ecol. 2005 May 1;52(3):297-305. doi: 10.1016/j.femsec.2004.11.009. Epub 2004 Dec 22.
9
Dissimilatory arsenate and sulfate reduction in Desulfotomaculum auripigmentum sp. nov.
Arch Microbiol. 1997 Nov;168(5):380-8. doi: 10.1007/s002030050512.

引用本文的文献

2
Effects of Sulfide Input on Arsenate Bioreduction and Its Reduction Product Formation in Sulfidic Groundwater.
Int J Environ Res Public Health. 2022 Dec 17;19(24):16987. doi: 10.3390/ijerph192416987.
3
Desulfurivibrio spp. mediate sulfur-oxidation coupled to Sb(V) reduction, a novel biogeochemical process.
ISME J. 2022 Jun;16(6):1547-1556. doi: 10.1038/s41396-022-01201-2. Epub 2022 Feb 7.
5
Composition and Activity of Microbial Communities along the Redox Gradient of an Alkaline, Hypersaline, Lake.
Front Microbiol. 2018 Jan 31;9:14. doi: 10.3389/fmicb.2018.00014. eCollection 2018.
6
Phylogenetic Structure and Metabolic Properties of Microbial Communities in Arsenic-Rich Waters of Geothermal Origin.
Front Microbiol. 2017 Dec 12;8:2468. doi: 10.3389/fmicb.2017.02468. eCollection 2017.
9
Linking Genes to Microbial Biogeochemical Cycling: Lessons from Arsenic.
Environ Sci Technol. 2017 Jul 5;51(13):7326-7339. doi: 10.1021/acs.est.7b00689. Epub 2017 Jun 23.
10

本文引用的文献

1
Speciation of arsenic in sulfidic waters.
Geochem Trans. 2003 Mar 18;4:1. doi: 10.1186/1467-4866-4-1. eCollection 2003.
2
The microbial arsenic cycle in Mono Lake, California.
FEMS Microbiol Ecol. 2004 Apr 1;48(1):15-27. doi: 10.1016/j.femsec.2003.12.016.
3
A novel arsenate respiring isolate that can utilize aromatic substrates.
FEMS Microbiol Ecol. 2004 Jun 1;48(3):323-32. doi: 10.1016/j.femsec.2004.02.008.
5
Anaerobic, nitrate-dependent microbial oxidation of ferrous iron.
Appl Environ Microbiol. 1996 Apr;62(4):1458-60. doi: 10.1128/aem.62.4.1458-1460.1996.
6
Growth of Strain SES-3 with Arsenate and Other Diverse Electron Acceptors.
Appl Environ Microbiol. 1995 Oct;61(10):3556-61. doi: 10.1128/aem.61.10.3556-3561.1995.
8
The ecology of arsenic.
Science. 2003 May 9;300(5621):939-44. doi: 10.1126/science.1081903.
9
Depth distribution of microbial diversity in Mono Lake, a meromictic soda lake in California.
Appl Environ Microbiol. 2003 Feb;69(2):1030-42. doi: 10.1128/AEM.69.2.1030-1042.2003.
10
Arsenic mobility and groundwater extraction in Bangladesh.
Science. 2002 Nov 22;298(5598):1602-6. doi: 10.1126/science.1076978.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验