Suppr超能文献

施加盐度梯度对加利福尼亚两个苏打湖沉积物中异化砷酸盐还原、硫酸盐还原及其他微生物过程的影响。

Effects of imposed salinity gradients on dissimilatory arsenate reduction, sulfate reduction, and other microbial processes in sediments from two California soda lakes.

作者信息

Kulp T R, Han S, Saltikov C W, Lanoil B D, Zargar K, Oremland R S

机构信息

U.S. Geological Survey, Water Resources Division, 345 Middlefield Rd., Mailstop 480, Menlo Park, CA 94025, USA.

出版信息

Appl Environ Microbiol. 2007 Aug;73(16):5130-7. doi: 10.1128/AEM.00771-07. Epub 2007 Jun 29.

Abstract

Salinity effects on microbial community structure and on potential rates of arsenate reduction, arsenite oxidation, sulfate reduction, denitrification, and methanogenesis were examined in sediment slurries from two California soda lakes. We conducted experiments with Mono Lake and Searles Lake sediments over a wide range of salt concentrations (25 to 346 g liter(-1)). With the exception of sulfate reduction, rates of all processes demonstrated an inverse relationship to total salinity. However, each of these processes persisted at low but detectable rates at salt saturation. Denaturing gradient gel electrophoresis analysis of partial 16S rRNA genes amplified from As(V) reduction slurries revealed that distinct microbial populations grew at low (25 to 50 g liter(-1)), intermediate (100 to 200 g liter(-1)), and high (>300 g liter(-1)) salinity. At intermediate and high salinities, a close relative of a cultivated As-respiring halophile was present. These results suggest that organisms adapted to more dilute conditions can remain viable at high salinity and rapidly repopulate the lake during periods of rising lake level. In contrast to As reduction, sulfate reduction in Mono Lake slurries was undetectable at salt saturation. Furthermore, sulfate reduction was excluded from Searles Lake sediments at any salinity despite the presence of abundant sulfate. Sulfate reduction occurred in Searles Lake sediment slurries only following inoculation with Mono Lake sediment, indicating the absence of sulfate-reducing flora. Experiments with borate-amended Mono Lake slurries suggest that the notably high (0.46 molal) concentration of borate in the Searles Lake brine was responsible for the exclusion of sulfate reducers from that ecosystem.

摘要

研究了盐度对加利福尼亚州两个苏打湖沉积物浆液中微生物群落结构以及砷酸盐还原、亚砷酸盐氧化、硫酸盐还原、反硝化作用和甲烷生成潜在速率的影响。我们在广泛的盐浓度范围(25至346克/升)内对莫诺湖和瑟尔斯湖的沉积物进行了实验。除硫酸盐还原外,所有过程的速率均与总盐度呈反比关系。然而,这些过程在盐饱和时仍以低但可检测的速率持续存在。对从砷(V)还原浆液中扩增的部分16S rRNA基因进行变性梯度凝胶电泳分析表明,不同的微生物种群在低(25至50克/升)、中(100至200克/升)和高(>300克/升)盐度下生长。在中高盐度下,存在一种培养的砷呼吸嗜盐菌的近亲。这些结果表明,适应较稀条件的生物在高盐度下仍能存活,并在湖面上升期间迅速重新在湖中繁殖。与砷还原相反,莫诺湖浆液中的硫酸盐还原在盐饱和时无法检测到。此外,尽管瑟尔斯湖沉积物中有大量硫酸盐,但在任何盐度下都没有硫酸盐还原现象。只有在接种莫诺湖沉积物后,瑟尔斯湖沉积物浆液中才发生硫酸盐还原,这表明不存在硫酸盐还原菌群。用硼酸盐改良的莫诺湖浆液进行的实验表明,瑟尔斯湖卤水中显著高(0.46摩尔)的硼酸盐浓度是该生态系统中硫酸盐还原菌被排除的原因。

相似文献

4
Diversity, activity, and abundance of sulfate-reducing bacteria in saline and hypersaline soda lakes.
Appl Environ Microbiol. 2007 Apr;73(7):2093-100. doi: 10.1128/AEM.02622-06. Epub 2007 Feb 16.
5
A microbial arsenic cycle in a salt-saturated, extreme environment.
Science. 2005 May 27;308(5726):1305-8. doi: 10.1126/science.1110832.
6
Sulfide oxidation coupled to arsenate reduction by a diverse microbial community in a soda lake.
Appl Environ Microbiol. 2006 Mar;72(3):2043-9. doi: 10.1128/AEM.72.3.2043-2049.2006.
7
Microbial diversity in sediments of saline Qinghai Lake, China: linking geochemical controls to microbial ecology.
Microb Ecol. 2006 Jan;51(1):65-82. doi: 10.1007/s00248-005-0228-6. Epub 2006 Jan 13.
8
Sulfidogenesis under extremely haloalkaline conditions in soda lakes of Kulunda Steppe (Altai, Russia).
FEMS Microbiol Ecol. 2010 Aug;73(2):278-90. doi: 10.1111/j.1574-6941.2010.00901.x. Epub 2010 May 4.
10
Selenate-dependent anaerobic arsenite oxidation by a bacterium from Mono Lake, California.
Appl Environ Microbiol. 2008 May;74(9):2588-94. doi: 10.1128/AEM.01995-07. Epub 2008 Mar 7.

引用本文的文献

1
Tropical lacustrine sediment microbial community response to an extreme El Niño event.
Sci Rep. 2023 Apr 27;13(1):6868. doi: 10.1038/s41598-023-33280-2.
2
Limitation of Microbial Processes at Saturation-Level Salinities in a Microbial Mat Covering a Coastal Salt Flat.
Appl Environ Microbiol. 2021 Aug 11;87(17):e0069821. doi: 10.1128/AEM.00698-21.
4
The Role of Stress Proteins in Haloarchaea and Their Adaptive Response to Environmental Shifts.
Biomolecules. 2020 Sep 29;10(10):1390. doi: 10.3390/biom10101390.
5
Microbial Responses to Simulated Salinization and Desalinization in the Sediments of the Qinghai-Tibetan Lakes.
Front Microbiol. 2020 Aug 7;11:1772. doi: 10.3389/fmicb.2020.01772. eCollection 2020.
6
Living at the Frontiers of Life: Extremophiles in Chile and Their Potential for Bioremediation.
Front Microbiol. 2018 Oct 30;9:2309. doi: 10.3389/fmicb.2018.02309. eCollection 2018.
7
Desiccation- and Saline-Tolerant Bacteria and Archaea in Kalahari Pan Sediments.
Front Microbiol. 2018 Sep 20;9:2082. doi: 10.3389/fmicb.2018.02082. eCollection 2018.
8
Comparative Metagenomics Provides Insight Into the Ecosystem Functioning of the Shark Bay Stromatolites, Western Australia.
Front Microbiol. 2018 Jun 25;9:1359. doi: 10.3389/fmicb.2018.01359. eCollection 2018.
9
New Arsenate Reductase Gene (arrA) PCR Primers for Diversity Assessment and Quantification in Environmental Samples.
Appl Environ Microbiol. 2017 Feb 1;83(4). doi: 10.1128/AEM.02725-16. Print 2017 Feb 15.
10
Microbial Mat Compositional and Functional Sensitivity to Environmental Disturbance.
Front Microbiol. 2016 Oct 17;7:1632. doi: 10.3389/fmicb.2016.01632. eCollection 2016.

本文引用的文献

2
Sulfide oxidation coupled to arsenate reduction by a diverse microbial community in a soda lake.
Appl Environ Microbiol. 2006 Mar;72(3):2043-9. doi: 10.1128/AEM.72.3.2043-2049.2006.
3
Selective inhibition of ammonium oxidation and nitrification-linked n(2)o formation by methyl fluoride and dimethyl ether.
Appl Environ Microbiol. 1993 Aug;59(8):2457-64. doi: 10.1128/aem.59.8.2457-2464.1993.
4
Nitrogen fixation dynamics of two diazotrophic communities in mono lake, california.
Appl Environ Microbiol. 1990 Mar;56(3):614-22. doi: 10.1128/aem.56.3.614-622.1990.
5
Denitrification in san francisco bay intertidal sediments.
Appl Environ Microbiol. 1984 May;47(5):1106-12. doi: 10.1128/aem.47.5.1106-1112.1984.
6
Denitrification rates in a marine sediment as measured by the acetylene inhibition technique.
Appl Environ Microbiol. 1978 Jul;36(1):139-43. doi: 10.1128/aem.36.1.139-143.1978.
7
A microbial arsenic cycle in a salt-saturated, extreme environment.
Science. 2005 May 27;308(5726):1305-8. doi: 10.1126/science.1110832.
8
The enigma of prokaryotic life in deep hypersaline anoxic basins.
Science. 2005 Jan 7;307(5706):121-3. doi: 10.1126/science.1103569.
9
The Ribosomal Database Project (RDP-II): sequences and tools for high-throughput rRNA analysis.
Nucleic Acids Res. 2005 Jan 1;33(Database issue):D294-6. doi: 10.1093/nar/gki038.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验