Niehus Eike, Gressmann Helga, Ye Fang, Schlapbach Ralph, Dehio Michaela, Dehio Christoph, Stack Allison, Meyer Thomas F, Suerbaum Sebastian, Josenhans Christine
Institute of Hygiene and Microbiology, University of Wuerzburg, Josef-Schneider-Strasse 2, D-97080 Wuerzburg, Germany.
Mol Microbiol. 2004 May;52(4):947-61. doi: 10.1111/j.1365-2958.2004.04006.x.
The flagellar system of Helicobacter pylori, which comprises more than 40 mostly unclustered genes, is essential for colonization of the human stomach mucosa. In order to elucidate the complex transcriptional circuitry of flagellar biosynthesis in H. pylori and its link to other cell functions, mutants in regulatory genes governing flagellar biosynthesis (rpoN, flgR, flhA, flhF, HP0244) and whole-genome microarray technology were used in this study. The regulon controlled by RpoN, its activator FlgR (FleR) and the cognate histidine kinase HP0244 (FleS) was characterized on a genome-wide scale for the first time. Seven novel genes (HP1076, HP1233, HP1154/1155, HP0366/367, HP0869) were identified as belonging to RpoN-associated flagellar regulons. The hydrogenase accessory gene HP0869 was the only annotated non-flagellar gene in the RpoN regulon. Flagellar basal body components FlhA and FlhF were characterized as functional equivalents to master regulators in H. pylori, as their absence led to a general reduction of transcripts in the RpoN (class 2) and FliA (class 3) regulons, and of 24 genes newly attributed to intermediate regulons, under the control of two or more promoters. FlhA- and FlhF-dependent regulons comprised flagellar and non-flagellar genes. Transcriptome analysis revealed that negative feedback regulation of the FliA regulon was dependent on the antisigma factor FlgM. FlgM was also involved in FlhA- but not FlhF-dependent feedback control of the RpoN regulon. In contrast to other bacteria, chemotaxis and flagellar motor genes were not controlled by FliA or RpoN. A true master regulator of flagellar biosynthesis is absent in H. pylori, consistent with the essential role of flagellar motility and chemotaxis for this organism.
幽门螺杆菌的鞭毛系统由40多个大多未聚类的基因组成,对人类胃黏膜的定殖至关重要。为了阐明幽门螺杆菌鞭毛生物合成的复杂转录调控机制及其与其他细胞功能的联系,本研究使用了鞭毛生物合成调控基因(rpoN、flgR、flhA、flhF、HP0244)的突变体和全基因组微阵列技术。首次在全基因组范围内对由RpoN、其激活因子FlgR(FleR)和同源组氨酸激酶HP0244(FleS)控制的调控子进行了表征。七个新基因(HP1076、HP1233、HP1154/1155、HP0366/367、HP0869)被鉴定为属于与RpoN相关的鞭毛调控子。氢化酶辅助基因HP0869是RpoN调控子中唯一注释的非鞭毛基因。鞭毛基体成分FlhA和FlhF被表征为幽门螺杆菌中主调控因子的功能等同物,因为它们的缺失导致RpoN(2类)和FliA(3类)调控子中的转录本普遍减少,以及在两个或多个启动子控制下新归为中间调控子的24个基因的转录本减少。FlhA和FlhF依赖的调控子包括鞭毛和非鞭毛基因。转录组分析表明,FliA调控子的负反馈调节依赖于抗σ因子FlgM。FlgM也参与了RpoN调控子的FlhA依赖性但非FlhF依赖性反馈控制。与其他细菌不同,趋化性和鞭毛运动基因不受FliA或RpoN的控制。幽门螺杆菌中不存在真正的鞭毛生物合成主调控因子,这与鞭毛运动性和趋化性对该生物体的重要作用一致。