Pennaneach Vincent, Kolodner Richard D
Ludwig Institute for Cancer Research, Cancer Center and Department of Medicine, University of California-San Diego School of Medicine-CMME 3058, 9500 Gilman Drive, La Jolla, California 92093-0669, USA.
Nat Genet. 2004 Jun;36(6):612-7. doi: 10.1038/ng1359. Epub 2004 May 9.
In telomerase-deficient Saccharomyces cerevisiae, telomeres are maintained by recombination. Here we used a S. cerevisiae assay for characterizing gross chromosomal rearrangements (GCRs) to analyze genome instability in post-senescent telomerase-deficient cells. Telomerase-deficient tlc1 and est2 mutants did not have increased GCR rates, but their telomeres could be joined to other DNAs resulting in chromosome fusions. Inactivation of Tel1 or either the Rad51 or Rad59 recombination pathways in telomerase-deficient cells increased the GCR rate, even though telomeres were maintained. The GCRs were translocations and chromosome fusions formed by nonhomologous end joining. We observed chromosome fusions only in mutant strains expressing Rad51 and Rad55 or when Tel1 was inactivated. In contrast, inactivation of Mec1 resulted in more inversion translocations such as the isochromosomes seen in human tumors. These inversion translocations seemed to be formed by recombination after replication of broken chromosomes.
在端粒酶缺陷型酿酒酵母中,端粒通过重组得以维持。在此,我们利用酿酒酵母检测法来表征染色体大片段重排(GCRs),以分析衰老后端粒酶缺陷型细胞中的基因组不稳定性。端粒酶缺陷型的tlc1和est2突变体的GCR率并未增加,但其端粒可与其他DNA相连,导致染色体融合。在端粒酶缺陷型细胞中,Tel1或Rad51及Rad59重组途径之一的失活会增加GCR率,即便端粒得以维持。这些GCR是通过非同源末端连接形成的易位和染色体融合。我们仅在表达Rad51和Rad55的突变菌株中或Tel1失活时观察到染色体融合。相比之下,Mec1的失活导致更多的倒位易位,如在人类肿瘤中所见的等臂染色体。这些倒位易位似乎是在断裂染色体复制后通过重组形成的。