Suppr超能文献

使用FOSLS对三维顺应性血流进行建模。

Modeling 3-D compliant blood flow with FOSLS.

作者信息

Heys Jeffrey J, DeGroff Curt, Manteuffel Tom, McCormick Steve, Tufo Henry

机构信息

Department of Applied Mathematics, University of Colorado at Boulder 80309-0526, USA.

出版信息

Biomed Sci Instrum. 2004;40:193-9.

Abstract

Blood flow in large vessels is typically modeled using the Navier-Stokes equations for the fluid domain and elasticity equations for the vessel wall. As the wall deforms, additional complications are introduced because the shape of the fluid domain changes, necessitating the use of a re-mapping or re-griding process for the fluid region. Typically, this system (fluid, solid, mapping) is solved using an iterative approach in which the fluid, elastic, and mapping equations are solved in series until the iterations converge. We present a new approach based on multilevel minimization of the finite element approximation error using a least-squares (LS) norm. This approach allows for minimization of the error for the entire system or in selected parts. The multilevel LS approach overcomes many shortcomings of standard techniques. Most notably, the computational cost of solving the problem increases linearly with the degrees of freedom and the associated least-squares functional provides an a posteriori error measure. This paper compares the LS finite element approach to other popular numerical methods, specifically, the commercial package CFD-ACE. The focus of the comparison is on accuracy, computational cost, scalability (both parallel and serial), and flexibility. We show that the multilevel LS finite element approach scales optimally (i.e., linearly in serial environments), while the other methods degrade substantially as the problem size increases.

摘要

大血管中的血流通常使用流体域的纳维 - 斯托克斯方程和血管壁的弹性方程进行建模。随着血管壁变形,会引入额外的复杂性,因为流体域的形状发生了变化,这就需要对流体区域使用重新映射或重新网格化过程。通常,这个系统(流体、固体、映射)使用迭代方法求解,其中流体、弹性和映射方程依次求解,直到迭代收敛。我们提出了一种基于使用最小二乘(LS)范数对有限元近似误差进行多级最小化的新方法。这种方法允许对整个系统或选定部分的误差进行最小化。多级LS方法克服了标准技术的许多缺点。最显著的是,解决问题的计算成本随自由度线性增加,并且相关的最小二乘泛函提供了一种后验误差度量。本文将LS有限元方法与其他流行的数值方法进行比较,具体而言,是与商业软件包CFD - ACE进行比较。比较的重点在于准确性、计算成本、可扩展性(并行和串行)以及灵活性。我们表明,多级LS有限元方法具有最佳的扩展性(即在串行环境中呈线性),而其他方法随着问题规模的增加会大幅退化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验