Department of Computer Science, University of Illinois, Urbana, Illinois 61801, USA.
J Comput Chem. 2010 Jun;31(8):1625-35. doi: 10.1002/jcc.21446.
The Poisson-Boltzmann equation is an important tool in modeling solvent in biomolecular systems. In this article, we focus on numerical approximations to the electrostatic potential expressed in the regularized linear Poisson-Boltzmann equation. We expose the flux directly through a first-order system form of the equation. Using this formulation, we propose a system that yields a tractable least-squares finite element formulation and establish theory to support this approach. The least-squares finite element approximation naturally provides an a posteriori error estimator and we present numerical evidence in support of the method. The computational results highlight optimality in the case of adaptive mesh refinement for a variety of molecular configurations. In particular, we show promising performance for the Born ion, Fasciculin 1, methanol, and a dipole, which highlights robustness of our approach.
泊松-玻尔兹曼方程是生物分子系统中模拟溶剂的重要工具。在本文中,我们专注于正则化线性泊松-玻尔兹曼方程表示的静电势的数值逼近。我们直接通过方程的一阶系统形式来表示通量。利用这种公式,我们提出了一个系统,该系统产生了一个可处理的最小二乘有限元公式,并建立了支持这种方法的理论。最小二乘有限元逼近自然提供了一个后验误差估计器,我们提供了支持该方法的数值证据。计算结果突出了各种分子构型的自适应网格细化情况下的最优性。特别是,我们展示了 Born 离子、Fasciculin 1、甲醇和偶极子的有希望的性能,这突出了我们方法的稳健性。