Suppr超能文献

与严重急性呼吸综合征冠状病毒解旋酶相关的多种酶活性。

Multiple enzymatic activities associated with severe acute respiratory syndrome coronavirus helicase.

作者信息

Ivanov Konstantin A, Thiel Volker, Dobbe Jessika C, van der Meer Yvonne, Snijder Eric J, Ziebuhr John

机构信息

Institute of Virology and Immunology, University of Würzburg, Würzburg, Germany.

出版信息

J Virol. 2004 Jun;78(11):5619-32. doi: 10.1128/JVI.78.11.5619-5632.2004.

Abstract

Severe acute respiratory syndrome coronavirus (SARS-CoV), a newly identified group 2 coronavirus, is the causative agent of severe acute respiratory syndrome, a life-threatening form of pneumonia in humans. Coronavirus replication and transcription are highly specialized processes of cytoplasmic RNA synthesis that localize to virus-induced membrane structures and were recently proposed to involve a complex enzymatic machinery that, besides RNA-dependent RNA polymerase, helicase, and protease activities, also involves a series of RNA-processing enzymes that are not found in most other RNA virus families. Here, we characterized the enzymatic activities of a recombinant form of the SARS-CoV helicase (nonstructural protein [nsp] 13), a superfamily 1 helicase with an N-terminal zinc-binding domain. We report that nsp13 has both RNA and DNA duplex-unwinding activities. SARS-CoV nsp13 unwinds its substrates in a 5'-to-3' direction and features a remarkable processivity, allowing efficient strand separation of extended regions of double-stranded RNA and DNA. Characterization of the nsp13-associated (deoxy)nucleoside triphosphatase ([dNTPase) activities revealed that all natural nucleotides and deoxynucleotides are substrates of nsp13, with ATP, dATP, and GTP being hydrolyzed slightly more efficiently than other nucleotides. Furthermore, we established an RNA 5'-triphosphatase activity for the SARS-CoV nsp13 helicase which may be involved in the formation of the 5' cap structure of viral RNAs. The data suggest that the (d)NTPase and RNA 5'-triphosphatase activities of nsp13 have a common active site. Finally, we established that, in SARS-CoV-infected Vero E6 cells, nsp13 localizes to membranes that appear to be derived from the endoplasmic reticulum and are the likely site of SARS-CoV RNA synthesis.

摘要

严重急性呼吸综合征冠状病毒(SARS-CoV)是一种新发现的2型冠状病毒,是严重急性呼吸综合征的病原体,这是一种对人类生命构成威胁的肺炎形式。冠状病毒的复制和转录是细胞质RNA合成的高度专业化过程,定位于病毒诱导的膜结构,最近有人提出这涉及一种复杂的酶机制,除了RNA依赖性RNA聚合酶、解旋酶和蛋白酶活性外,还涉及一系列在大多数其他RNA病毒家族中未发现的RNA加工酶。在这里,我们对重组形式的SARS-CoV解旋酶(非结构蛋白[nsp]13)的酶活性进行了表征,它是一种具有N端锌结合结构域的超家族1解旋酶。我们报告nsp13具有RNA和DNA双链解旋活性。SARS-CoV nsp13以5'至3'方向解开其底物,并具有显著的持续合成能力,能够高效地分离双链RNA和DNA的延伸区域。对nsp13相关的(脱氧)核苷三磷酸酶([dNTPase])活性的表征表明,所有天然核苷酸和脱氧核苷酸都是nsp13的底物,其中ATP、dATP和GTP的水解效率略高于其他核苷酸。此外,我们确定了SARS-CoV nsp13解旋酶具有RNA 5'-三磷酸酶活性,这可能参与病毒RNA 5'帽结构的形成。数据表明,nsp13的(d)NTPase和RNA 5'-三磷酸酶活性具有共同的活性位点。最后,我们确定,在感染SARS-CoV的Vero E6细胞中,nsp13定位于似乎源自内质网的膜上,这些膜可能是SARS-CoV RNA合成的位点。

相似文献

1
Multiple enzymatic activities associated with severe acute respiratory syndrome coronavirus helicase.
J Virol. 2004 Jun;78(11):5619-32. doi: 10.1128/JVI.78.11.5619-5632.2004.
4
The severe acute respiratory syndrome (SARS) coronavirus NTPase/helicase belongs to a distinct class of 5' to 3' viral helicases.
J Biol Chem. 2003 Oct 10;278(41):39578-82. doi: 10.1074/jbc.C300328200. Epub 2003 Aug 13.
5
Severe acute respiratory syndrome coronavirus replication inhibitor that interferes with the nucleic acid unwinding of the viral helicase.
Antimicrob Agents Chemother. 2012 Sep;56(9):4718-28. doi: 10.1128/AAC.00957-12. Epub 2012 Jun 25.
6
SARS-Coronavirus-2 Nsp13 Possesses NTPase and RNA Helicase Activities That Can Be Inhibited by Bismuth Salts.
Virol Sin. 2020 Jun;35(3):321-329. doi: 10.1007/s12250-020-00242-1. Epub 2020 Jun 4.
7
Cooperative translocation enhances the unwinding of duplex DNA by SARS coronavirus helicase nsP13.
Nucleic Acids Res. 2010 Nov;38(21):7626-36. doi: 10.1093/nar/gkq647. Epub 2010 Jul 29.
8
Mechanism of nucleic acid unwinding by SARS-CoV helicase.
PLoS One. 2012;7(5):e36521. doi: 10.1371/journal.pone.0036521. Epub 2012 May 15.
10
The PKA-CREB1 axis regulates coronavirus proliferation by viral helicase nsp13 association.
J Virol. 2024 Apr 16;98(4):e0156523. doi: 10.1128/jvi.01565-23. Epub 2024 Mar 6.

引用本文的文献

5
Anti-interferon armamentarium of human coronaviruses.
Cell Mol Life Sci. 2025 Mar 13;82(1):116. doi: 10.1007/s00018-025-05605-z.
6
Duplex Unwinding Mechanism of Coronavirus MERS-CoV nsp13 Helicase.
Chem Biomed Imaging. 2024 Dec 19;3(2):111-122. doi: 10.1021/cbmi.4c00077. eCollection 2025 Feb 24.
8
Transcription Kinetics in the Coronavirus Life Cycle.
Wiley Interdiscip Rev RNA. 2025 Jan-Feb;16(1):e70000. doi: 10.1002/wrna.70000.
9
Human coronaviruses: activation and antagonism of innate immune responses.
Microbiol Mol Biol Rev. 2025 Mar 27;89(1):e0001623. doi: 10.1128/mmbr.00016-23. Epub 2024 Dec 19.
10

本文引用的文献

1
The crystal structures of severe acute respiratory syndrome virus main protease and its complex with an inhibitor.
Proc Natl Acad Sci U S A. 2003 Nov 11;100(23):13190-5. doi: 10.1073/pnas.1835675100. Epub 2003 Oct 29.
2
Reverse genetics with a full-length infectious cDNA of severe acute respiratory syndrome coronavirus.
Proc Natl Acad Sci U S A. 2003 Oct 28;100(22):12995-3000. doi: 10.1073/pnas.1735582100. Epub 2003 Oct 20.
3
Biosynthesis, purification, and substrate specificity of severe acute respiratory syndrome coronavirus 3C-like proteinase.
J Biol Chem. 2004 Jan 16;279(3):1637-42. doi: 10.1074/jbc.M310875200. Epub 2003 Oct 15.
4
Non-inverted versus inverted plots in enzyme kinetics.
Nature. 1959 Oct 24;184:1296-8. doi: 10.1038/1841296b0.
5
Multigene RNA vector based on coronavirus transcription.
J Virol. 2003 Sep;77(18):9790-8. doi: 10.1128/jvi.77.18.9790-9798.2003.
7
Mechanisms and enzymes involved in SARS coronavirus genome expression.
J Gen Virol. 2003 Sep;84(Pt 9):2305-2315. doi: 10.1099/vir.0.19424-0.
8
The severe acute respiratory syndrome (SARS) coronavirus NTPase/helicase belongs to a distinct class of 5' to 3' viral helicases.
J Biol Chem. 2003 Oct 10;278(41):39578-82. doi: 10.1074/jbc.C300328200. Epub 2003 Aug 13.
9
Host factors in positive-strand RNA virus genome replication.
J Virol. 2003 Aug;77(15):8181-6. doi: 10.1128/jvi.77.15.8181-8186.2003.
10
mRNA cap-1 methyltransferase in the SARS genome.
Cell. 2003 Jun 13;113(6):701-2. doi: 10.1016/s0092-8674(03)00424-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验