Ivanov Konstantin A, Thiel Volker, Dobbe Jessika C, van der Meer Yvonne, Snijder Eric J, Ziebuhr John
Institute of Virology and Immunology, University of Würzburg, Würzburg, Germany.
J Virol. 2004 Jun;78(11):5619-32. doi: 10.1128/JVI.78.11.5619-5632.2004.
Severe acute respiratory syndrome coronavirus (SARS-CoV), a newly identified group 2 coronavirus, is the causative agent of severe acute respiratory syndrome, a life-threatening form of pneumonia in humans. Coronavirus replication and transcription are highly specialized processes of cytoplasmic RNA synthesis that localize to virus-induced membrane structures and were recently proposed to involve a complex enzymatic machinery that, besides RNA-dependent RNA polymerase, helicase, and protease activities, also involves a series of RNA-processing enzymes that are not found in most other RNA virus families. Here, we characterized the enzymatic activities of a recombinant form of the SARS-CoV helicase (nonstructural protein [nsp] 13), a superfamily 1 helicase with an N-terminal zinc-binding domain. We report that nsp13 has both RNA and DNA duplex-unwinding activities. SARS-CoV nsp13 unwinds its substrates in a 5'-to-3' direction and features a remarkable processivity, allowing efficient strand separation of extended regions of double-stranded RNA and DNA. Characterization of the nsp13-associated (deoxy)nucleoside triphosphatase ([dNTPase) activities revealed that all natural nucleotides and deoxynucleotides are substrates of nsp13, with ATP, dATP, and GTP being hydrolyzed slightly more efficiently than other nucleotides. Furthermore, we established an RNA 5'-triphosphatase activity for the SARS-CoV nsp13 helicase which may be involved in the formation of the 5' cap structure of viral RNAs. The data suggest that the (d)NTPase and RNA 5'-triphosphatase activities of nsp13 have a common active site. Finally, we established that, in SARS-CoV-infected Vero E6 cells, nsp13 localizes to membranes that appear to be derived from the endoplasmic reticulum and are the likely site of SARS-CoV RNA synthesis.
严重急性呼吸综合征冠状病毒(SARS-CoV)是一种新发现的2型冠状病毒,是严重急性呼吸综合征的病原体,这是一种对人类生命构成威胁的肺炎形式。冠状病毒的复制和转录是细胞质RNA合成的高度专业化过程,定位于病毒诱导的膜结构,最近有人提出这涉及一种复杂的酶机制,除了RNA依赖性RNA聚合酶、解旋酶和蛋白酶活性外,还涉及一系列在大多数其他RNA病毒家族中未发现的RNA加工酶。在这里,我们对重组形式的SARS-CoV解旋酶(非结构蛋白[nsp]13)的酶活性进行了表征,它是一种具有N端锌结合结构域的超家族1解旋酶。我们报告nsp13具有RNA和DNA双链解旋活性。SARS-CoV nsp13以5'至3'方向解开其底物,并具有显著的持续合成能力,能够高效地分离双链RNA和DNA的延伸区域。对nsp13相关的(脱氧)核苷三磷酸酶([dNTPase])活性的表征表明,所有天然核苷酸和脱氧核苷酸都是nsp13的底物,其中ATP、dATP和GTP的水解效率略高于其他核苷酸。此外,我们确定了SARS-CoV nsp13解旋酶具有RNA 5'-三磷酸酶活性,这可能参与病毒RNA 5'帽结构的形成。数据表明,nsp13的(d)NTPase和RNA 5'-三磷酸酶活性具有共同的活性位点。最后,我们确定,在感染SARS-CoV的Vero E6细胞中,nsp13定位于似乎源自内质网的膜上,这些膜可能是SARS-CoV RNA合成的位点。