Lydersen Espen, Larssen Thorjørn, Fjeld Eirik
The Norwegian Institute for Water Research, Box 173, Kjelsås, N-0411 Oslo, Norway.
Sci Total Environ. 2004 Jun 29;326(1-3):63-9. doi: 10.1016/j.scitotenv.2003.12.005.
Acid neutralizing capacity (ANC) is the parameter most commonly used as chemical indicator for fish response to acidification. Empirical relationships between fish status of surface waters and ANC have been documented earlier. ANC is commonly calculated as the difference between base cations ([BC]=[Ca2+]+[Mg2+]+[N+]+[K+]) and strong acid anions ([SAA]=[SO4(2)-]+[NO3-]+[Cl-]). This is a very robust calculation of ANC, because none of the parameters incorporated are affected by the partial pressure of CO2, in contrast to the remaining major ions in waters, pH ([H+]), aluminum ([Aln+]), alkalinity ([HCO3-/CO3(2)-]) and organic anions ([An-]). Here we propose a modified ANC calculation where the permanent anionic charge of the organic acids is assumed as a part of the strong acid anions. In many humic lakes, the weak organic acids are the predominant pH-buffering system. Because a significant amount of the weak organic acids have pK-values<3.0-3.5, these relatively strong acids will permanently be deprotonated in almost all natural waters (i.e. pH>4.5). This means that they will be permanently present as anions, equal to the strong acid inorganic anions, SO4(2)-, NO3- and Cl-. In the literature, natural organic acids are often described as triprotic acids with a low pK1 value. Assuming a triprotic model, we suggest to add 1/3 of the organic acid charge density to the strong acid anions in the ANC calculation. The suggested organic acid adjusted ANC (ANC(OAA)), is then calculated as follows: ANC(OAA)=[BC]-([SAA]+1/3CD*TOC) where TOC is total organic carbon (mg C L(-1)), and CD=10.2 is charge density of the organic matter (microeq/mg C), based on literature data from Swedish lakes. ANC(OAA) gives significant lower values of ANC in order to achieve equal fish status compared with the traditional ANC calculation. Using ANC(OAA) the humic conditions in lakes are better taken into account. This may also help explain observations of higher ANC needed to have reproducing fish populations in lakes with higher TOC concentrations.
酸中和能力(ANC)是最常用于作为鱼类对酸化反应的化学指标的参数。地表水鱼类状况与ANC之间的经验关系早有文献记载。ANC通常计算为碱金属阳离子([BC]=[Ca2+]+[Mg2+]+[N+]+[K+])与强酸阴离子([SAA]=[SO4(2-)]+[NO3-]+[Cl-])之间的差值。这是一种非常可靠的ANC计算方法,因为与水中的其他主要离子、pH值([H+])、铝([Aln+])、碱度([HCO3-/CO3(2-)])和有机阴离子([An-])不同,所纳入的参数均不受二氧化碳分压的影响。在此,我们提出一种改进的ANC计算方法,即将有机酸的永久阴离子电荷视为强酸阴离子的一部分。在许多腐殖质湖泊中,弱有机酸是主要的pH缓冲系统。由于大量弱有机酸的pK值<3.0 - 3.5,这些相对较强的酸在几乎所有天然水体中(即pH>4.5)都会永久去质子化。这意味着它们将永久以阴离子形式存在,等同于强酸无机阴离子SO4(2-)、NO3-和Cl-。在文献中,天然有机酸常被描述为具有低pK1值的三元酸。假设为三元酸模型,我们建议在ANC计算中,将有机酸电荷密度的1/3加到强酸阴离子上。调整后的有机酸ANC(ANC(OAA))计算如下:ANC(OAA)=[BC]-([SAA]+1/3CD*TOC),其中TOC是总有机碳(mg C L(-1)),且根据瑞典湖泊的文献数据,CD = 10.2是有机物的电荷密度(微当量/mg C)。与传统的ANC计算相比,ANC(OAA)得出的ANC值显著更低,以便实现相同的鱼类状况。使用ANC(OAA)可以更好地考虑湖泊中的腐殖质条件。这也可能有助于解释在总有机碳浓度较高的湖泊中,需要更高的ANC才能有繁殖鱼类种群的观测结果。