Homberg Uwe
Fachbereich Biologie/Tierphysiologie, Philipps-Universität Marburg, 35032 Marburg, Germany.
Naturwissenschaften. 2004 May;91(5):199-208. doi: 10.1007/s00114-004-0525-9. Epub 2004 Apr 20.
Like many vertebrate species, insects rely on a sun compass for spatial orientation and long- range navigation. In addition to the sun, however, insects can also use the polarization pattern of the sky as a reference for estimating navigational directions. Recent analysis of polarization vision pathways in the brain of orthopteroid insects sheds some light onto brain areas that might act as internal navigation centers. Here I review the significance, peripheral mechanisms, and central processing stages for polarization vision in insects with special reference to the locust Schistocerca gregaria. As in other insect species, polarization vision in locusts relies on specialized photoreceptor cells in a small dorsal rim area of the compound eye. Stages in the brain involved in polarized light signaling include specific areas in the lamina, medulla and lobula of the optic lobe and, in the midbrain, the anterior optic tubercle, the lateral accessory lobe, and the central complex. Integration of polarized-light signals with information on solar position appears to start in the optic lobe. In the central complex, polarization-opponent interneurons form a network of interconnected neurons. The organization of the central complex, its connections to thoracic motor centers, and its involvement in the spatial control of locomotion strongly suggest that it serves as a spatial organizer within the insect brain, including the functions of compass orientation and path integration. Time compensation in compass orientation is possibly achieved through a neural pathway from the internal circadian clock in the accessory medulla to the protocerebral bridge of the central complex.
与许多脊椎动物物种一样,昆虫依靠太阳罗盘进行空间定向和远程导航。然而,除了太阳之外,昆虫还可以利用天空的偏振模式作为估计导航方向的参考。最近对直翅目昆虫大脑中偏振视觉通路的分析,为可能作为内部导航中心的脑区提供了一些线索。在此,我特别以沙漠蝗Schistocerca gregaria为例,综述昆虫偏振视觉的意义、外周机制和中枢处理阶段。与其他昆虫物种一样,蝗虫的偏振视觉依赖于复眼小背缘区域中的特化光感受器细胞。大脑中参与偏振光信号传导的阶段包括视叶的板层、髓质和小叶中的特定区域,以及中脑中的前视结节、外侧副叶和中央复合体。偏振光信号与太阳位置信息的整合似乎始于视叶。在中央复合体中,偏振拮抗中间神经元形成一个相互连接的神经元网络。中央复合体的组织结构、其与胸部运动中枢的连接以及其在运动空间控制中的作用,强烈表明它在昆虫大脑中充当空间组织者,包括罗盘定向和路径整合功能。罗盘定向中的时间补偿可能是通过一条从副髓质中的内部生物钟到中央复合体原脑桥的神经通路来实现的。