Chen Yani, Zhang Lin, Chen Hao, Sun Xuelong, Peng Jigen
Machine Life and Intelligence Research Center, Guangzhou University, Guangzhou, China.
School of Mathematics and Information Science, Guangzhou University, Guangzhou, China.
Heliyon. 2024 Aug 5;10(16):e35458. doi: 10.1016/j.heliyon.2024.e35458. eCollection 2024 Aug 30.
Effective cue integration is essential for an animal's survival. The ring attractor network has emerged as a powerful framework for understanding how animals seamlessly integrate various cues. This network not only elucidates neural dynamics within the brain, especially in spatial encoding systems like the heading direction (HD) system, but also sheds light on cue integration within decision-making processes. Yet, many significant phenomena across different fields lack clear explanations. For instance, in physiology, the integration mechanism of Drosophila's compass neuron when confronted with conflicting self-motion cues and external sensory cues with varying gain control settings is not well elucidated. Similarly, in ethology, the decision-making system shows Bayesian integration (BI) under minimal cue conflicts, but shifts to a winner-take-all (WTA) mode as conflicts surpass a certain threshold. To address these gaps, we introduce a ring attractor network with asymmetrical neural connections and synaptic dynamics in this paper. A thorough series of simulations has been conducted to assess its ability to track external cues and integrate conflicting cues. The results from these simulations demonstrate that the proposed model replicates observed neural dynamics and offers a framework for modeling biologically plausible cue integration behaviors. Furthermore, our findings yield several testable predictions that could inform future neuroethological research, providing insights into the role of ring attractor dynamics in the animal brain.
有效的线索整合对动物的生存至关重要。环形吸引子网络已成为理解动物如何无缝整合各种线索的强大框架。该网络不仅阐明了大脑内的神经动力学,特别是在诸如头部方向(HD)系统等空间编码系统中,还揭示了决策过程中的线索整合。然而,不同领域的许多重要现象缺乏清晰的解释。例如,在生理学中,果蝇罗盘神经元在面对具有不同增益控制设置的冲突自我运动线索和外部感觉线索时的整合机制尚未得到很好的阐明。同样,在行为学中,决策系统在最小线索冲突下表现出贝叶斯整合(BI),但当冲突超过一定阈值时会转变为赢家通吃(WTA)模式。为了解决这些差距,我们在本文中引入了一种具有不对称神经连接和突触动力学的环形吸引子网络。已经进行了一系列全面的模拟,以评估其跟踪外部线索和整合冲突线索的能力。这些模拟结果表明,所提出的模型复制了观察到的神经动力学,并为模拟生物学上合理的线索整合行为提供了一个框架。此外,我们的研究结果产生了几个可测试的预测,这些预测可以为未来的神经行为学研究提供信息,深入了解环形吸引子动力学在动物大脑中的作用。