Suppr超能文献

用于随机事件预校正PET的发射图像重建,允许负正弦图值。

Emission image reconstruction for randoms-precorrected PET allowing negative sinogram values.

作者信息

Ahn Sangtae, Fessler Jeffrey A

机构信息

Electrical Engineering and Computer Science Department, University of Michigan, Ann Arbor, MI 48109-2122, USA.

出版信息

IEEE Trans Med Imaging. 2004 May;23(5):591-601. doi: 10.1109/tmi.2004.826046.

Abstract

Most positron emission tomography (PET) emission scans are corrected for accidental coincidence (AC) events by real-time subtraction of delayed-window coincidences, leaving only the randoms-precorrected data available for image reconstruction. The real-time randoms precorrection compensates in mean for AC events but destroys the Poisson statistics. The exact log-likelihood for randoms-precorrected data is inconvenient, so practical approximations are needed for maximum likelihood or penalized-likelihood image reconstruction. Conventional approximations involve setting negative sinogram values to zero, which can induce positive systematic biases, particularly for scans with low counts per ray. We propose new likelihood approximations that allow negative sinogram values without requiring zero-thresholding. With negative sinogram values, the log-likelihood functions can be nonconcave, complicating maximization; nevertheless, we develop monotonic algorithms for the new models by modifying the separable paraboloidal surrogates and the maximum-likelihood expectation-maximization (ML-EM) methods. These algorithms ascend to local maximizers of the objective function. Analysis and simulation results show that the new shifted Poisson (SP) model is nearly free of systematic bias yet keeps low variance. Despite its simpler implementation, the new SP performs comparably to the saddle-point model which has shown the best performance (as to systematic bias and variance) in randoms-precorrected PET emission reconstruction.

摘要

大多数正电子发射断层扫描(PET)发射扫描通过对延迟窗符合事件进行实时减法来校正偶然符合(AC)事件,仅留下经随机事件预校正的数据用于图像重建。实时随机事件预校正对AC事件进行平均补偿,但破坏了泊松统计。对于经随机事件预校正的数据,精确的对数似然性不方便,因此在最大似然或惩罚似然图像重建中需要实用的近似方法。传统的近似方法包括将负的正弦图值设置为零,这可能会导致正的系统偏差,特别是对于每条射线计数较低的扫描。我们提出了新的似然近似方法,允许负的正弦图值而无需零阈值处理。对于负的正弦图值,对数似然函数可能是非凹的,这使得最大化变得复杂;尽管如此,我们通过修改可分离抛物面替代物和最大似然期望最大化(ML-EM)方法为新模型开发了单调算法。这些算法上升到目标函数的局部最大化器。分析和模拟结果表明,新的移位泊松(SP)模型几乎没有系统偏差,同时保持低方差。尽管实现更简单,但新的SP模型在经随机事件预校正的PET发射重建中,在系统偏差和方差方面的表现与已显示出最佳性能的鞍点模型相当。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验