Suppr超能文献

用于正电子发射断层扫描(PET)图像重建问题的费舍尔信息矩阵的精确估计。

Accurate estimation of the Fisher information matrix for the PET image reconstruction problem.

作者信息

Li Quanzheng, Asma Evren, Qi Jinyi, Bading James R, Leahy Richard M

机构信息

Signal and Image Processing Institute, Univ of Southern California, Los Angeles, CA 90089, USA.

出版信息

IEEE Trans Med Imaging. 2004 Sep;23(9):1057-64. doi: 10.1109/TMI.2004.833202.

Abstract

The Fisher information matrix (FIM) plays a key role in the analysis and applications of statistical image reconstruction methods based on Poisson data models. The elements of the FIM are a function of the reciprocal of the mean values of sinogram elements. Conventional plug-in FIM estimation methods do not work well at low counts, where the FIM estimate is highly sensitive to the reciprocal mean estimates at individual detector pairs. A generalized error look-up table (GELT) method is developed to estimate the reciprocal of the mean of the sinogram data. This approach is also extended to randoms precorrected data. Based on these techniques, an accurate FIM estimate is obtained for both Poisson and randoms precorrected data. As an application, the new GELT method is used to improve resolution uniformity and achieve near-uniform image resolution in low count situations.

摘要

费希尔信息矩阵(FIM)在基于泊松数据模型的统计图像重建方法的分析和应用中起着关键作用。FIM的元素是正弦图元素均值倒数的函数。传统的插件式FIM估计方法在低计数情况下效果不佳,此时FIM估计对单个探测器对处的倒数均值估计高度敏感。开发了一种广义误差查找表(GELT)方法来估计正弦图数据均值的倒数。该方法还扩展到随机预校正数据。基于这些技术,对于泊松数据和随机预校正数据都能获得准确的FIM估计。作为应用,新的GELT方法用于提高分辨率均匀性,并在低计数情况下实现近乎均匀的图像分辨率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验