Meng Lingmin, Frei Mark G, Osorio Ivan, Strang Gilbert, Nguyen Truong Q
Bosch RTC-Pi, USA.
Med Eng Phys. 2004 Jun;26(5):379-93. doi: 10.1016/j.medengphy.2004.02.006.
To investigate the potential for improving the performance of the Osorio-Frei seizure detection algorithm (OFA) by incorporating multiple FIR filters operating in parallel and Gaussian mixture models (GMM) for ECoG features distributions, thus creating "hybrid" system.
The "hybrid" algorithm decomposes the signal into four subbands, using wavelets, after which relevant features are extracted for each subband. Following these steps, multivariate GMM are developed for seizure and non-seizure states, using training segments. State classification is based on thresholding of the likelihood ratio of seizure vs. non-seizure data. Multiple comparisons are performed between this "hybrid" and a modified version of the OFA suitable for this purpose, using as indices false positives (FP), false negatives (FN) and speed of detection.
GMM improved speed of detection over the modified OFA at negligible FP levels. The average detection delay from expert visually placed electrographic onset over all seizures was reduced from 4.8 s for modified OFA to 1.8 s for GMM (p < 0.002) Individualized training by subject proved superior to group-based training.
This work introduces multi-feature extraction from ECoG signals together with use of Gaussian mixtures to model them, as tools to improve automated seizure detection. At the clinical level, this approach appears to increase warning time and with it the window during which safety measures and seizure blockage may be implemented, at an affordable computational cost and with negligible FP rate.
通过合并多个并行运行的有限脉冲响应(FIR)滤波器以及用于脑电信号(ECoG)特征分布的高斯混合模型(GMM)来研究提高奥索里奥 - 弗雷癫痫发作检测算法(OFA)性能的潜力,从而创建“混合”系统。
“混合”算法使用小波将信号分解为四个子带,之后为每个子带提取相关特征。在这些步骤之后,利用训练片段为癫痫发作和非癫痫发作状态开发多元高斯混合模型。状态分类基于癫痫发作与非癫痫发作数据似然比的阈值化。使用误报(FP)、漏报(FN)和检测速度作为指标,对这种“混合”算法与适用于此目的的OFA修改版本进行多次比较。
在可忽略的误报水平下,高斯混合模型比修改后的OFA提高了检测速度。所有癫痫发作中,从专家视觉确定的电图发作开始的平均检测延迟从修改后的OFA的4.8秒减少到高斯混合模型的1.8秒(p < 0.002)。按个体进行的训练证明优于基于群体的训练。
这项工作引入了从脑电信号中进行多特征提取以及使用高斯混合模型对其进行建模,作为改善自动癫痫发作检测的工具。在临床层面,这种方法似乎增加了预警时间,以及随之而来的可以实施安全措施和癫痫发作阻断的时间段,且计算成本可承受,误报率可忽略不计。