Suppr超能文献

基于 EEG 的新生儿癫痫分类的高斯混合模型。

Gaussian mixture models for classification of neonatal seizures using EEG.

机构信息

Department Electrical and Electronic Engineering, University College Cork, Ireland.

出版信息

Physiol Meas. 2010 Jul;31(7):1047-64. doi: 10.1088/0967-3334/31/7/013. Epub 2010 Jun 28.

Abstract

A real-time neonatal seizure detection system is proposed based on a Gaussian mixture model classifier. The system includes feature transformation techniques and classifier output postprocessing. The detector was evaluated on a database of 20 patients with 330 h of recordings. A detailed analysis of the choice of parameters for the detector is provided. A mean good detection rate of 79% was obtained with only 0.5 false detections per hour. A thorough review of all misclassified events was performed, from which a number of patterns causing false detections were identified.

摘要

提出了一种基于高斯混合模型分类器的实时新生儿癫痫发作检测系统。该系统包括特征变换技术和分类器输出后处理。该检测器在一个包含 20 名患者 330 小时记录的数据库上进行了评估。对检测器参数的选择进行了详细的分析。在每小时仅检测到 0.5 个误报的情况下,平均良好检测率达到了 79%。对所有误分类事件进行了彻底的审查,从中确定了一些导致误报的模式。

相似文献

1
Gaussian mixture models for classification of neonatal seizures using EEG.
Physiol Meas. 2010 Jul;31(7):1047-64. doi: 10.1088/0967-3334/31/7/013. Epub 2010 Jun 28.
2
EEG-based neonatal seizure detection with Support Vector Machines.
Clin Neurophysiol. 2011 Mar;122(3):464-473. doi: 10.1016/j.clinph.2010.06.034. Epub 2010 Aug 14.
4
A multistage knowledge-based system for EEG seizure detection in newborn infants.
Clin Neurophysiol. 2007 Dec;118(12):2781-97. doi: 10.1016/j.clinph.2007.08.012. Epub 2007 Oct 1.
5
Multi-channel EEG based neonatal seizure detection.
Conf Proc IEEE Eng Med Biol Soc. 2006;2006:4679-84. doi: 10.1109/IEMBS.2006.260461.
6
Neonatal EEG seizure detection using a new signal structural complexity measure based on matching pursuit decomposition with nonstationary dictionary.
Comput Methods Programs Biomed. 2022 Sep;224:107014. doi: 10.1016/j.cmpb.2022.107014. Epub 2022 Jul 9.
7
Classifier models and architectures for EEG-based neonatal seizure detection.
Physiol Meas. 2008 Oct;29(10):1157-78. doi: 10.1088/0967-3334/29/10/002. Epub 2008 Sep 18.
8
Time varying neonatal seizure localization.
Methods Inf Med. 2010;49(5):473-8. doi: 10.3414/ME09-02-0041. Epub 2010 Jun 7.
9
Automated neonatal seizure detection mimicking a human observer reading EEG.
Clin Neurophysiol. 2008 Nov;119(11):2447-54. doi: 10.1016/j.clinph.2008.07.281. Epub 2008 Sep 27.
10
Instantaneous measure of EEG channel importance for improved patient-adaptive neonatal seizure detection.
IEEE Trans Biomed Eng. 2012 Mar;59(3):717-27. doi: 10.1109/TBME.2011.2178411. Epub 2011 Dec 7.

引用本文的文献

1
Acute symptomatic seizures in newborns: a narrative review.
Acta Epileptol. 2024 Feb 18;6(1):5. doi: 10.1186/s42494-024-00151-w.
2
Time-Series Anomaly Detection Based on Dynamic Temporal Graph Convolutional Network for Epilepsy Diagnosis.
Bioengineering (Basel). 2024 Jan 5;11(1):0. doi: 10.3390/bioengineering11010053.
3
A method for AI assisted human interpretation of neonatal EEG.
Sci Rep. 2022 Jun 29;12(1):10932. doi: 10.1038/s41598-022-14894-4.
4
Heart Rate Variability Analysis for Seizure Detection in Neonatal Intensive Care Units.
Bioengineering (Basel). 2022 Apr 7;9(4):165. doi: 10.3390/bioengineering9040165.
6
Predicting seizure by modeling synaptic plasticity based on EEG signals - a case study of inherited epilepsy.
Commun Nonlinear Sci Numer Simul. 2018 Mar;56:330-343. doi: 10.1016/j.cnsns.2017.08.020. Epub 2017 Jul 24.
7
Sparse representation-based EMD and BLDA for automatic seizure detection.
Med Biol Eng Comput. 2017 Aug;55(8):1227-1238. doi: 10.1007/s11517-016-1587-5. Epub 2016 Oct 20.
8
Clinical implementation of a neonatal seizure detection algorithm.
Decis Support Syst. 2015 Feb;70:86-96. doi: 10.1016/j.dss.2014.12.006.
9
Neonatal seizures and status epilepticus.
J Clin Neurophysiol. 2012 Oct;29(5):441-8. doi: 10.1097/WNP.0b013e31826bd90d.
10
A discriminative approach to EEG seizure detection.
AMIA Annu Symp Proc. 2011;2011:1309-17. Epub 2011 Oct 22.

本文引用的文献

1
A multistage system for the automated detection of epileptic seizures in neonatal electroencephalography.
J Clin Neurophysiol. 2009 Aug;26(4):218-26. doi: 10.1097/WNP.0b013e3181b2f29d.
2
Automated neonatal seizure detection mimicking a human observer reading EEG.
Clin Neurophysiol. 2008 Nov;119(11):2447-54. doi: 10.1016/j.clinph.2008.07.281. Epub 2008 Sep 27.
3
Classifier models and architectures for EEG-based neonatal seizure detection.
Physiol Meas. 2008 Oct;29(10):1157-78. doi: 10.1088/0967-3334/29/10/002. Epub 2008 Sep 18.
4
A comparison of quantitative EEG features for neonatal seizure detection.
Clin Neurophysiol. 2008 Jun;119(6):1248-61. doi: 10.1016/j.clinph.2008.02.001. Epub 2008 Apr 1.
5
A multistage knowledge-based system for EEG seizure detection in newborn infants.
Clin Neurophysiol. 2007 Dec;118(12):2781-97. doi: 10.1016/j.clinph.2007.08.012. Epub 2007 Oct 1.
6
Characterization of neonatal seizures by conventional EEG and single-channel EEG.
Clin Neurophysiol. 2007 Oct;118(10):2156-61. doi: 10.1016/j.clinph.2007.06.061. Epub 2007 Aug 31.
7
Defining the gap between electrographic seizure burden, clinical expression and staff recognition of neonatal seizures.
Arch Dis Child Fetal Neonatal Ed. 2008 May;93(3):F187-91. doi: 10.1136/adc.2005.086314. Epub 2007 Jul 11.
8
Treatment of neonatal seizures.
Arch Dis Child Fetal Neonatal Ed. 2007 Mar;92(2):F148-50. doi: 10.1136/adc.2004.068551.
9
Person authentication using brainwaves (EEG) and maximum a posteriori model adaptation.
IEEE Trans Pattern Anal Mach Intell. 2007 Apr;29(4):743-52. doi: 10.1109/TPAMI.2007.1012.
10
Summary proceedings from the neurology group on neonatal seizures.
Pediatrics. 2006 Mar;117(3 Pt 2):S23-7. doi: 10.1542/peds.2005-0620D.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验