Suppr超能文献

基因组可塑性:插入序列元件、转座子和整合子以及DNA重排。

Genome plasticity: insertion sequence elements, transposons and integrons, and DNA rearrangement.

作者信息

Bennett Peter M

机构信息

Department of Pathology and Microbiology, University of Bristol, School of Medical Sciences, Bristol, UK.

出版信息

Methods Mol Biol. 2004;266:71-113. doi: 10.1385/1-59259-763-7:071.

Abstract

Living organisms are defined by the genes they possess. Control of expression of this gene set, both temporally and in response to the environment, determines whether an organism can survive changing conditions and can compete for the resources it needs to reproduce. Bacteria are no exception; changes to the genome will, in general, threaten the ability of the microbe to survive, but acquisition of new genes may enhance its chances of survival by allowing growth in a previously hostile environment. For example, acquisition of an antibiotic resistance gene by a bacterial pathogen can permit it to thrive in the presence of an antibiotic that would otherwise kill it; this may compromise clinical treatments. Many forces, chemical and genetic, can alter the genetic content of DNA by locally changing its nucleotide sequence. Notable for genetic change in bacteria are transposable elements and site-specific recombination systems such as integrons. Many of the former can mobilize genes from one replicon to another, including chromosome-plasmid translocation, thus establishing conditions for interspecies gene transfer. Balancing this, transposition activity can result in loss or rearrangement of DNA sequences. This chapter discusses bacterial DNA transfer systems, transposable elements and integrons, and the contributions each makes towards the evolution of bacterial genomes, particularly in relation to bacterial pathogenesis. It highlights the variety of phylogenetically distinct transposable elements, the variety of transposition mechanisms, and some of the implications of rearranging DNA, and addresses the effects of genetic change on the fitness of the microbe.

摘要

生物体由其拥有的基因所定义。对这套基因表达在时间上以及对环境响应方面的控制,决定了一个生物体是否能够在不断变化的条件下存活,以及是否能够竞争其繁殖所需的资源。细菌也不例外;基因组的改变通常会威胁微生物的生存能力,但获得新基因可能会通过使其在以前不利的环境中生长来增加其生存机会。例如,细菌病原体获得抗生素抗性基因可以使其在原本会杀死它的抗生素存在的情况下茁壮成长;这可能会影响临床治疗。许多化学和遗传力量可以通过局部改变DNA的核苷酸序列来改变其遗传内容。在细菌的遗传变化中值得注意的是转座元件和诸如整合子之类的位点特异性重组系统。许多前者可以将基因从一个复制子转移到另一个复制子,包括染色体 - 质粒易位,从而为种间基因转移创造条件。与此平衡的是,转座活性可能导致DNA序列的丢失或重排。本章讨论细菌DNA转移系统、转座元件和整合子,以及它们各自对细菌基因组进化的贡献,特别是与细菌致病性相关的方面。它强调了系统发育上不同的转座元件的多样性、转座机制的多样性,以及DNA重排的一些影响,并探讨了遗传变化对微生物适应性的影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验