Suppr超能文献

金黄色葡萄球菌细胞生长与分裂的原子力显微镜观察

Atomic force microscopy of cell growth and division in Staphylococcus aureus.

作者信息

Touhami Ahmed, Jericho Manfred H, Beveridge Terry J

机构信息

Department of Physics, Dalhousie University, Halifax, Nova Scotia, Canada B3H 3J5.

出版信息

J Bacteriol. 2004 Jun;186(11):3286-95. doi: 10.1128/JB.186.11.3286-3295.2004.

Abstract

The growth and division of Staphylococcus aureus was monitored by atomic force microscopy (AFM) and thin-section transmission electron microscopy (TEM). A good correlation of the structural events of division was found using the two microscopies, and AFM was able to provide new additional information. AFM was performed under water, ensuring that all structures were in the hydrated condition. Sequential images on the same structure revealed progressive changes to surfaces, suggesting the cells were growing while images were being taken. Using AFM small depressions were seen around the septal annulus at the onset of division that could be attributed to so-called murosomes (Giesbrecht et al., Arch. Microbiol. 141:315-324, 1985). The new cell wall formed from the cross wall (i.e., completed septum) after cell separation and possessed concentric surface rings and a central depression; these structures could be correlated to a midline of reactive material in the developing septum that was seen by TEM. The older wall, that which was not derived from a newly formed cross wall, was partitioned into two different surface zones, smooth and gel-like zones, with different adhesive properties that could be attributed to cell wall turnover. The new and old wall topographies are equated to possible peptidoglycan arrangements, but no conclusion can be made regarding the planar or scaffolding models.

摘要

通过原子力显微镜(AFM)和超薄切片透射电子显微镜(TEM)监测金黄色葡萄球菌的生长和分裂。使用这两种显微镜发现分裂的结构事件具有良好的相关性,并且AFM能够提供新的额外信息。AFM在水下进行,确保所有结构处于水合状态。同一结构的连续图像显示表面有渐进变化,表明在拍摄图像时细胞正在生长。在分裂开始时,使用AFM可在隔膜环周围看到小凹陷,这可能归因于所谓的壁体(吉斯布雷希特等人,《微生物学杂志》141:315 - 324,1985年)。细胞分离后由横壁(即完整的隔膜)形成的新细胞壁具有同心表面环和中央凹陷;这些结构可与TEM观察到的正在发育的隔膜中反应性物质的中线相关联。未源自新形成横壁的旧壁被划分为两个不同的表面区域,即光滑区和凝胶状区,具有不同的粘附特性,这可能归因于细胞壁更新。新壁和旧壁的形貌等同于可能的肽聚糖排列,但关于平面或支架模型无法得出结论。

相似文献

1
Atomic force microscopy of cell growth and division in Staphylococcus aureus.
J Bacteriol. 2004 Jun;186(11):3286-95. doi: 10.1128/JB.186.11.3286-3295.2004.
3
Characterization of the mechanism of the Staphylococcus aureus cell envelope by bacitracin and bacitracin-metal ions.
J Membr Biol. 2008 Sep-Oct;225(1-3):27-37. doi: 10.1007/s00232-008-9130-8. Epub 2008 Oct 15.
4
Cryo-electron microscopy of cell division in Staphylococcus aureus reveals a mid-zone between nascent cross walls.
Mol Microbiol. 2007 Apr;64(1):195-206. doi: 10.1111/j.1365-2958.2007.05634.x.
5
Direct observation of Staphylococcus aureus cell wall digestion by lysostaphin.
J Bacteriol. 2008 Dec;190(24):7904-9. doi: 10.1128/JB.01116-08. Epub 2008 Oct 3.
7
Atomic Force Microscopy Analysis of Bacterial Cell Wall Peptidoglycan Architecture.
Methods Mol Biol. 2016;1440:3-9. doi: 10.1007/978-1-4939-3676-2_1.
8
Immobilizing live bacteria for AFM imaging of cellular processes.
Ultramicroscopy. 2009 Jun;109(7):775-80. doi: 10.1016/j.ultramic.2009.01.012. Epub 2009 Feb 10.
9
Peptidoglycan architecture can specify division planes in Staphylococcus aureus.
Nat Commun. 2010 Jun 15;1:26. doi: 10.1038/ncomms1025.
10
atomic force microscopy-infrared spectroscopy of bacteria.
J R Soc Interface. 2018 Mar;15(140). doi: 10.1098/rsif.2018.0115.

引用本文的文献

1
A novel polysaccharide in the envelope of influences the septal secretion of preproteins with a YSIRK/GXXS motif.
J Bacteriol. 2025 Feb 20;207(2):e0047824. doi: 10.1128/jb.00478-24. Epub 2025 Jan 28.
2
Atomic Force Microsocopy: Key Unconventional Approach for Bacterial Nanotubes Characterization In Vivo.
ACS Omega. 2024 Nov 11;9(47):46950-46959. doi: 10.1021/acsomega.4c06349. eCollection 2024 Nov 26.
3
An outer membrane determinant for RNA phage genome entry in .
iScience. 2023 Dec 7;27(1):108675. doi: 10.1016/j.isci.2023.108675. eCollection 2024 Jan 19.
4
Processing of LtaS restricts LTA assembly and YSIRK preprotein trafficking into cross-walls.
mBio. 2024 Feb 14;15(2):e0285223. doi: 10.1128/mbio.02852-23. Epub 2024 Jan 4.
5
Expansion microscopy applied to mono- and dual-species biofilms.
NPJ Biofilms Microbiomes. 2023 Dec 5;9(1):92. doi: 10.1038/s41522-023-00460-x.
6
Surveying membrane landscapes: a new look at the bacterial cell surface.
Nat Rev Microbiol. 2023 Aug;21(8):502-518. doi: 10.1038/s41579-023-00862-w. Epub 2023 Feb 24.
7
Antimicrobial Efficacy of Herbal and Chlorhexidine Mouthrinse against - An Microbiological Study.
J Pharm Bioallied Sci. 2022 Jul;14(Suppl 1):S318-S322. doi: 10.4103/jpbs.jpbs_821_21. Epub 2022 Jul 13.
8
Practical considerations for feature assignment in high-speed AFM of live cell membranes.
Biophys Physicobiol. 2022 Apr 15;19:1-21. doi: 10.2142/biophysico.bppb-v19.0016. eCollection 2022.
10
Comparison of bacteria disintegration methods and their influence on data analysis in metabolomics.
Sci Rep. 2021 Oct 21;11(1):20859. doi: 10.1038/s41598-021-99873-x.

本文引用的文献

1
Cryo-transmission electron microscopy of frozen-hydrated sections of Escherichia coli and Pseudomonas aeruginosa.
J Bacteriol. 2003 Oct;185(20):6112-8. doi: 10.1128/JB.185.20.6112-6118.2003.
2
Aggregation of yeast cells: direct measurement of discrete lectin-carbohydrate interactions.
Microbiology (Reading). 2003 Oct;149(Pt 10):2873-2878. doi: 10.1099/mic.0.26431-0.
3
Recent progress in the application of atomic force microscopy imaging and force spectroscopy to microbiology.
Curr Opin Microbiol. 2003 Jun;6(3):317-23. doi: 10.1016/s1369-5274(03)00058-4.
4
Tertiary structure of bacterial murein: the scaffold model.
J Bacteriol. 2003 Jun;185(11):3458-68. doi: 10.1128/JB.185.11.3458-3468.2003.
5
Feeling the forces: atomic force microscopy in cell biology.
Life Sci. 2003 Apr 25;72(23):2553-60. doi: 10.1016/s0024-3205(03)00165-6.
7
Atomic force microscopy, a powerful tool in microbiology.
J Bacteriol. 2002 Oct;184(19):5205-13. doi: 10.1128/JB.184.19.5205-5213.2002.
8
Scanning probe microscopy.
Anal Chem. 2002 Jun 15;74(12):2851-62. doi: 10.1021/ac025695w.
9
Bacterial recognition of mineral surfaces: nanoscale interactions between Shewanella and alpha-FeOOH.
Science. 2001 May 18;292(5520):1360-3. doi: 10.1126/science.1059567.
10
On the architecture of the gram-negative bacterial murein sacculus.
J Bacteriol. 2000 Oct;182(20):5925-30. doi: 10.1128/JB.182.20.5925-5930.2000.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验