Suppr超能文献

大肠杆菌和铜绿假单胞菌冷冻水合切片的低温透射电子显微镜观察。

Cryo-transmission electron microscopy of frozen-hydrated sections of Escherichia coli and Pseudomonas aeruginosa.

作者信息

Matias Valério R F, Al-Amoudi Ashraf, Dubochet Jacques, Beveridge Terry J

机构信息

Biophysics Interdepartmental Group and Department of Microbiology, College of Biological Science, University of Guelph, Guelph, Ontario, Canada.

出版信息

J Bacteriol. 2003 Oct;185(20):6112-8. doi: 10.1128/JB.185.20.6112-6118.2003.

Abstract

High-pressure freezing of Escherichia coli K-12 and Pseudomonas aeruginosa PAO1 in the presence of cryoprotectants provided consistent vitrification of cells so that frozen-hydrated sections could be cut, providing approximately 2-nm resolution of structure. The size and shape of the bacteria, as well as their surface and cytoplasmic constituents, were nicely preserved and compared well with other published high-resolution techniques. Cells possessed a rich cytoplasm containing a diffuse dispersion of ribosomes and genetic material. Close examination of cells revealed that the periplasmic space was compressed during cryosectioning, a finding which provided supporting evidence that this space is filled by a compressible gel. Since the outer membrane and peptidoglycan layer are bonded together via lipoproteins, the space between them (although still part of the periplasmic space) was not as compacted. Even when this cryosectioning compression was taken into account, there was still substantial variability in the width of the periplasmic space. It is possible that the protoplast has some capacity to float freely within the periplasm.

摘要

在冷冻保护剂存在的情况下,对大肠杆菌K-12和铜绿假单胞菌PAO1进行高压冷冻,可使细胞实现一致的玻璃化,从而能够切割冷冻水合切片,提供约2纳米的结构分辨率。细菌的大小和形状,以及它们的表面和细胞质成分都得到了很好的保存,与其他已发表的高分辨率技术相比效果良好。细胞拥有丰富的细胞质,其中核糖体和遗传物质呈弥散分布。对细胞的仔细检查发现,在冷冻切片过程中周质空间被压缩,这一发现为该空间被可压缩凝胶填充提供了支持证据。由于外膜和肽聚糖层通过脂蛋白结合在一起,它们之间的空间(尽管仍是周质空间的一部分)没有那么紧密。即使考虑到这种冷冻切片压缩,周质空间的宽度仍存在很大差异。原生质体有可能具有在周质内自由漂浮的某种能力。

相似文献

1
Cryo-transmission electron microscopy of frozen-hydrated sections of Escherichia coli and Pseudomonas aeruginosa.
J Bacteriol. 2003 Oct;185(20):6112-8. doi: 10.1128/JB.185.20.6112-6118.2003.
6
DNA-containing membrane vesicles of Pseudomonas aeruginosa PAO1 and their genetic transformation potential.
Microbiology (Reading). 2004 Jul;150(Pt 7):2161-2169. doi: 10.1099/mic.0.26841-0.
7
Micromanipulator-assisted vitreous cryosectioning and sample preparation by high-pressure freezing.
Methods Enzymol. 2010;481:165-94. doi: 10.1016/S0076-6879(10)81008-0.
10
Comparison of the envelope architecture of E. coli using two methods: CEMOVIS and cryo-electron tomography.
J Electron Microsc (Tokyo). 2010;59(5):419-26. doi: 10.1093/jmicro/dfq056. Epub 2010 Jul 13.

引用本文的文献

1
The structure of the Tad pilus alignment complex reveals a periplasmic conduit for pilus extension.
Nat Commun. 2025 Jul 29;16(1):6977. doi: 10.1038/s41467-025-62457-8.
2
Mechanical stability of individual bacterial cells under different osmotic pressure conditions: a nanoindentation study of .
Beilstein J Nanotechnol. 2025 Jul 21;16:1171-1183. doi: 10.3762/bjnano.16.86. eCollection 2025.
3
Stress-mediated growth determines division site morphogenesis.
Proc Natl Acad Sci U S A. 2025 Jul 15;122(28):e2424441122. doi: 10.1073/pnas.2424441122. Epub 2025 Jul 9.
4
Transporter excess and clustering facilitate adaptor protein shuttling for bacterial efflux.
Cell Rep Phys Sci. 2025 Feb 19;6(2). doi: 10.1016/j.xcrp.2025.102441. Epub 2025 Feb 12.
5
assembles H1-T6SS in response to physical and chemical damage of the outer membrane.
Sci Adv. 2025 Mar 7;11(10):eadr1713. doi: 10.1126/sciadv.adr1713. Epub 2025 Mar 5.
6
Nanomechanical characterization of soft nanomaterial using atomic force microscopy.
Mater Today Bio. 2025 Jan 31;31:101506. doi: 10.1016/j.mtbio.2025.101506. eCollection 2025 Apr.
7
Structure and mechanism of the Zorya anti-phage defence system.
Nature. 2025 Mar;639(8056):1093-1101. doi: 10.1038/s41586-024-08493-8. Epub 2024 Dec 11.
8
Atomic structures of a bacteriocin targeting Gram-positive bacteria.
Nat Commun. 2024 Aug 16;15(1):7057. doi: 10.1038/s41467-024-51038-w.
9
YdbH and YnbE form an intermembrane bridge to maintain lipid homeostasis in the outer membrane of .
Proc Natl Acad Sci U S A. 2024 May 21;121(21):e2321512121. doi: 10.1073/pnas.2321512121. Epub 2024 May 15.
10
Atomic structures of a bacteriocin targeting Gram-positive bacteria.
Res Sq. 2024 Mar 27:rs.3.rs-4007122. doi: 10.21203/rs.3.rs-4007122/v1.

本文引用的文献

1
FINE STRUCTURE IN FROZEN-ETCHED YEAST CELLS.
J Cell Biol. 1963 Jun 1;17(3):609-28. doi: 10.1083/jcb.17.3.609.
2
High-pressure freezing for cryoelectron microscopy.
Trends Cell Biol. 1995 Sep;5(9):366-8. doi: 10.1016/s0962-8924(00)89071-6.
3
A cryotransmission electron microscopy study of skin barrier formation.
J Invest Dermatol. 2003 Apr;120(4):555-60. doi: 10.1046/j.1523-1747.2003.12102.x.
4
Crystal structure of bacterial multidrug efflux transporter AcrB.
Nature. 2002 Oct 10;419(6907):587-93. doi: 10.1038/nature01050.
5
Amorphous solid water produced by cryosectioning of crystalline ice at 113 K.
J Microsc. 2002 Aug;207(Pt 2):146-53. doi: 10.1046/j.1365-2818.2002.01051.x.
6
Electron tomographic analysis of frozen-hydrated tissue sections.
J Struct Biol. 2002 Apr-May;138(1-2):63-73. doi: 10.1016/s1047-8477(02)00034-5.
7
Bilayers of nucleosome core particles.
Biophys J. 2001 Oct;81(4):2414-21. doi: 10.1016/S0006-3495(01)75888-2.
8
A new approach for cryofixation by high-pressure freezing.
J Microsc. 2001 Sep;203(Pt 3):285-94. doi: 10.1046/j.1365-2818.2001.00919.x.
9
On the architecture of the gram-negative bacterial murein sacculus.
J Bacteriol. 2000 Oct;182(20):5925-30. doi: 10.1128/JB.182.20.5925-5930.2000.
10
The cell in absence of aggregation artifacts.
Micron. 2001 Jan;32(1):91-9. doi: 10.1016/s0968-4328(00)00026-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验