Suppr超能文献

小葡萄球菌质粒形成松弛体需要一种辅助蛋白。

An accessory protein is required for relaxosome formation by small staphylococcal plasmids.

作者信息

Smith Matthew C A, Thomas Christopher D

机构信息

Astbury Centre for Structural Molecular Biology, School of Biochemistry and Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom.

出版信息

J Bacteriol. 2004 Jun;186(11):3363-73. doi: 10.1128/JB.186.11.3363-3373.2004.

Abstract

Mobilization of the staphylococcal plasmid pC221 requires at least one plasmid-encoded protein, MobA, in order to form a relaxosome. pC221 and closely related plasmids also possess an overlapping reading frame encoding a protein of 15 kDa, termed MobC. By completing the nucleotide sequence of plasmid pC223, we have found a further example of this small protein, and gene knockouts have shown that MobC is essential for relaxosome formation and plasmid mobilization in both pC221 and pC223. Primer extension analysis has been used to identify the nic site in both of these plasmids, located upstream of the mobC gene in the sense strand. Although the sequence surrounding the nic site is highly conserved between pC221 and pC223, exchange of the oriT sequence between plasmids significantly reduces the extent of relaxation complex formation, suggesting that the Mob proteins are selective for their cognate plasmids in vivo.

摘要

葡萄球菌质粒pC221的迁移需要至少一种质粒编码蛋白MobA,以形成松弛体。pC221及密切相关的质粒还拥有一个重叠阅读框,编码一种15 kDa的蛋白,称为MobC。通过完成质粒pC223的核苷酸序列测定,我们发现了这种小蛋白的又一个实例,基因敲除实验表明,MobC对于pC221和pC223中松弛体的形成及质粒迁移至关重要。引物延伸分析已用于确定这两种质粒中的nic位点,该位点位于正义链上mobC基因的上游。虽然pC221和pC223之间nic位点周围的序列高度保守,但质粒之间oriT序列的交换显著降低了松弛复合体形成的程度,这表明Mob蛋白在体内对其同源质粒具有选择性。

相似文献

1
An accessory protein is required for relaxosome formation by small staphylococcal plasmids.
J Bacteriol. 2004 Jun;186(11):3363-73. doi: 10.1128/JB.186.11.3363-3373.2004.
2
Investigating the basis of substrate recognition in the pC221 relaxosome.
Mol Microbiol. 2006 Jun;60(5):1302-18. doi: 10.1111/j.1365-2958.2006.05188.x.
3
Reconstitution of a staphylococcal plasmid-protein relaxation complex in vitro.
J Bacteriol. 2004 Jun;186(11):3374-83. doi: 10.1128/JB.186.11.3374-3383.2004.
4
Two atypical mobilization proteins are involved in plasmid CloDF13 relaxation.
Mol Microbiol. 2001 Feb;39(4):1088-99. doi: 10.1046/j.1365-2958.2001.02308.x.
6
Mobilization functions of the bacteriocinogenic plasmid pRJ6 of Staphylococcus aureus.
J Microbiol. 2009 Jun;47(3):327-36. doi: 10.1007/s12275-009-0044-7. Epub 2009 Jun 26.
10

引用本文的文献

1
Molecular Mechanisms of Drug Resistance in .
Int J Mol Sci. 2022 Jul 22;23(15):8088. doi: 10.3390/ijms23158088.
2
Genetic Dissection of a Prevalent Plasmid-Encoded Conjugation System in .
Front Microbiol. 2021 May 28;12:680920. doi: 10.3389/fmicb.2021.680920. eCollection 2021.
4
Antimicrobial Resistance among Staphylococci of Animal Origin.
Microbiol Spectr. 2018 Jul;6(4). doi: 10.1128/microbiolspec.ARBA-0010-2017.
5
An updated view of plasmid conjugation and mobilization in Staphylococcus.
Mob Genet Elements. 2016 Jul 1;6(4):e1208317. doi: 10.1080/2159256X.2016.1208317. eCollection 2016 Jul-Aug.
6
Genomics of microbial plasmids: classification and identification based on replication and transfer systems and host taxonomy.
Front Microbiol. 2015 Mar 31;6:242. doi: 10.3389/fmicb.2015.00242. eCollection 2015.
7
Mobilizable Rolling-Circle Replicating Plasmids from Gram-Positive Bacteria: A Low-Cost Conjugative Transfer.
Microbiol Spectr. 2014 Sep 19;2(5):8. doi: 10.1128/microbiolspec.PLAS-0008-2013.
8
Bringing them together: plasmid pMV158 rolling circle replication and conjugation under an evolutionary perspective.
Plasmid. 2014 Jul;74:15-31. doi: 10.1016/j.plasmid.2014.05.004. Epub 2014 Jun 2.
9
Major families of multiresistant plasmids from geographically and epidemiologically diverse staphylococci.
G3 (Bethesda). 2011 Dec;1(7):581-91. doi: 10.1534/g3.111.000760. Epub 2011 Dec 1.
10
Autoregulation of the synthesis of the MobM relaxase encoded by the promiscuous plasmid pMV158.
J Bacteriol. 2012 Apr;194(7):1789-99. doi: 10.1128/JB.06827-11. Epub 2012 Jan 27.

本文引用的文献

1
Reconstitution of a staphylococcal plasmid-protein relaxation complex in vitro.
J Bacteriol. 2004 Jun;186(11):3374-83. doi: 10.1128/JB.186.11.3374-3383.2004.
2
Conjugative plasmid transfer in gram-positive bacteria.
Microbiol Mol Biol Rev. 2003 Jun;67(2):277-301, table of contents. doi: 10.1128/MMBR.67.2.277-301.2003.
3
Subdomain organization and catalytic residues of the F factor TraI relaxase domain.
Biochim Biophys Acta. 2003 Mar 21;1646(1-2):86-99. doi: 10.1016/s1570-9639(02)00553-8.
4
Structure-function analysis of Escherichia coli DNA helicase I reveals non-overlapping transesterase and helicase domains.
J Biol Chem. 2002 Nov 8;277(45):42645-53. doi: 10.1074/jbc.M205984200. Epub 2002 Aug 30.
7
MobA, the DNA strand transferase of plasmid R1162: the minimal domain required for DNA processing at the origin of transfer.
J Biol Chem. 2002 Apr 26;277(17):14575-80. doi: 10.1074/jbc.M110759200. Epub 2002 Feb 11.
8
Comparative biology of IncQ and IncQ-like plasmids.
Microbiol Mol Biol Rev. 2001 Dec;65(4):481-96, table of contents. doi: 10.1128/MMBR.65.4.481-496.2001.
10
Transfer protein TraY of plasmid R1 stimulates TraI-catalyzed oriT cleavage in vivo.
J Bacteriol. 2001 Feb;183(3):909-14. doi: 10.1128/JB.183.3.909-914.2001.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验