Suppr超能文献

谷氨酸脱氢酶对枯草芽孢杆菌调节蛋白GltC和TnrA活性的调节

Modulation of activity of Bacillus subtilis regulatory proteins GltC and TnrA by glutamate dehydrogenase.

作者信息

Belitsky Boris R, Sonenshein Abraham L

机构信息

Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA.

出版信息

J Bacteriol. 2004 Jun;186(11):3399-407. doi: 10.1128/JB.186.11.3399-3407.2004.

Abstract

The Bacillus subtilis gltAB operon, encoding glutamate synthase, requires a specific positive regulator, GltC, for its expression and is repressed by the global regulatory protein TnrA. The factor that controls TnrA activity, a complex of glutamine synthetase and a feedback inhibitor, such as glutamine, is known, but the signal for modulation of GltC activity has remained elusive. GltC-dependent gltAB expression was drastically reduced when cells were grown in media containing arginine or ornithine or proline, all of which are inducers and substrates of the Roc catabolic pathway. Analysis of gltAB expression in mutants with various defects in the Roc pathway indicated that rocG-encoded glutamate dehydrogenase was required for such repression, suggesting that the substrates or products of this enzyme are the real effectors of GltC. Given that RocG is an enzyme of glutamate catabolism, the main regulatory role of GltC may be prevention of a futile cycle of glutamate synthesis and degradation in the presence of arginine-related amino acids or proline. In addition, high activity of glutamate dehydrogenase was incompatible with activity of TnrA.

摘要

枯草芽孢杆菌编码谷氨酸合酶的gltAB操纵子,其表达需要特定的正向调节因子GltC,且受到全局调节蛋白TnrA的抑制。控制TnrA活性的因子,即谷氨酰胺合成酶与一种反馈抑制剂(如谷氨酰胺)的复合物,是已知的,但调节GltC活性的信号仍然难以捉摸。当细胞在含有精氨酸、鸟氨酸或脯氨酸的培养基中生长时,依赖GltC的gltAB表达会大幅降低,所有这些都是Roc分解代谢途径的诱导剂和底物。对Roc途径存在各种缺陷的突变体中gltAB表达的分析表明,rocG编码的谷氨酸脱氢酶是这种抑制所必需的,这表明该酶的底物或产物是GltC的真正效应物。鉴于RocG是谷氨酸分解代谢的一种酶,GltC的主要调节作用可能是在存在与精氨酸相关的氨基酸或脯氨酸的情况下,防止谷氨酸合成和降解的无效循环。此外,谷氨酸脱氢酶的高活性与TnrA的活性不相容。

相似文献

1
Modulation of activity of Bacillus subtilis regulatory proteins GltC and TnrA by glutamate dehydrogenase.
J Bacteriol. 2004 Jun;186(11):3399-407. doi: 10.1128/JB.186.11.3399-3407.2004.
3
Characterization of Bacillus subtilis mutants with carbon source-independent glutamate biosynthesis.
J Mol Microbiol Biotechnol. 2007;12(1-2):106-13. doi: 10.1159/000096465.
4
Molecular mechanism of the regulation of Bacillus subtilis gltAB expression by GltC.
J Mol Biol. 2007 Feb 2;365(5):1298-313. doi: 10.1016/j.jmb.2006.10.100. Epub 2006 Nov 3.
5
Evidence for synergistic control of glutamate biosynthesis by glutamate dehydrogenases and glutamate in Bacillus subtilis.
Environ Microbiol. 2015 Sep;17(9):3379-90. doi: 10.1111/1462-2920.12813. Epub 2015 Mar 27.
6
Role of TnrA in nitrogen source-dependent repression of Bacillus subtilis glutamate synthase gene expression.
J Bacteriol. 2000 Nov;182(21):5939-47. doi: 10.1128/JB.182.21.5939-5947.2000.
8
Hierarchical mutational events compensate for glutamate auxotrophy of a Bacillus subtilis gltC mutant.
Environ Microbiol Rep. 2017 Jun;9(3):279-289. doi: 10.1111/1758-2229.12531. Epub 2017 Apr 3.

引用本文的文献

1
Metabolic rewiring enables ammonium assimilation via a non-canonical fumarate-based pathway.
Microb Biotechnol. 2024 Mar;17(3):e14429. doi: 10.1111/1751-7915.14429.
2
GltS regulates biofilm formation in methicillin-resistant Staphylococcus aureus.
Commun Biol. 2022 Nov 23;5(1):1284. doi: 10.1038/s42003-022-04239-2.
3
Enhanced Glutamate Synthesis and Export by the Thermotolerant Emerging Industrial Workhorse in Response to High Osmolarity.
Front Microbiol. 2021 Apr 8;12:640980. doi: 10.3389/fmicb.2021.640980. eCollection 2021.
4
Role of GlnR in Controlling Expression of Nitrogen Metabolism Genes in .
J Bacteriol. 2020 Sep 8;202(19). doi: 10.1128/JB.00209-20.
5
Variants of the LysR-Type Regulator GltC With Altered Activator and Repressor Function.
Front Microbiol. 2019 Oct 9;10:2321. doi: 10.3389/fmicb.2019.02321. eCollection 2019.
6
Revisiting the in vivo GlnR-binding sites at the genome scale in Bacillus subtilis.
BMC Res Notes. 2017 Aug 23;10(1):422. doi: 10.1186/s13104-017-2703-9.
7
Identification of metabolism pathways directly regulated by sigma(54) factor in Bacillus thuringiensis.
Front Microbiol. 2015 May 12;6:407. doi: 10.3389/fmicb.2015.00407. eCollection 2015.
8
Hierarchical expression of genes controlled by the Bacillus subtilis global regulatory protein CodY.
Proc Natl Acad Sci U S A. 2014 Jun 3;111(22):8227-32. doi: 10.1073/pnas.1321308111. Epub 2014 May 19.

本文引用的文献

1
CcpA-dependent regulation of Bacillus subtilis glutamate dehydrogenase gene expression.
J Bacteriol. 2004 Jun;186(11):3392-8. doi: 10.1128/JB.186.11.3392-3398.2004.
4
Identification of additional TnrA-regulated genes of Bacillus subtilis associated with a TnrA box.
Mol Microbiol. 2003 Jul;49(1):157-65. doi: 10.1046/j.1365-2958.2003.03567.x.
5
Mechanisms of hyperammonemia.
Clin Chem Lab Med. 2002 Jul;40(7):653-62. doi: 10.1515/CCLM.2002.112.
6
Mutations in Bacillus subtilis glutamine synthetase that block its interaction with transcription factor TnrA.
Mol Microbiol. 2002 Aug;45(3):627-35. doi: 10.1046/j.1365-2958.2002.03054.x.
7
GabR, a member of a novel protein family, regulates the utilization of gamma-aminobutyrate in Bacillus subtilis.
Mol Microbiol. 2002 Jul;45(2):569-83. doi: 10.1046/j.1365-2958.2002.03036.x.
8
Bacillus subtilis 168 contains two differentially regulated genes encoding L-asparaginase.
J Bacteriol. 2002 Apr;184(8):2148-54. doi: 10.1128/JB.184.8.2148-2154.2002.
10
Role of TnrA in nitrogen source-dependent repression of Bacillus subtilis glutamate synthase gene expression.
J Bacteriol. 2000 Nov;182(21):5939-47. doi: 10.1128/JB.182.21.5939-5947.2000.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验