Dormeyer Miriam, Lübke Anastasia L, Müller Peter, Lentes Sabine, Reuß Daniel R, Thürmer Andrea, Stülke Jörg, Daniel Rolf, Brantl Sabine, Commichau Fabian M
Department of General Microbiology, Georg August University Göttingen, Grisebachstr. 8, Göttingen, 37077, Germany.
Department of Genetics, Bacterial Genetics, Friedrich Schiller University Jena, Philosophenweg 12, Jena, 07743, Germany.
Environ Microbiol Rep. 2017 Jun;9(3):279-289. doi: 10.1111/1758-2229.12531. Epub 2017 Apr 3.
Glutamate is the major donor of nitrogen for anabolic reactions. The Gram-positive soil bacterium Bacillus subtilis either utilizes exogenously provided glutamate or synthesizes it using the gltAB-encoded glutamate synthase (GOGAT). In the absence of glutamate, the transcription factor GltC activates expression of the GOGAT genes for glutamate production. Consequently, a gltC mutant strain is auxotrophic for glutamate. Using a genetic selection and screening system, we could isolate and differentiate between gltC suppressor mutants in one step. All mutants had acquired the ability to synthesize glutamate, independent of GltC. We identified (i) gain-of-function mutations in the gltR gene, encoding the transcription factor GltR, (ii) mutations in the promoter of the gltAB operon and (iii) massive amplification of the genomic locus containing the gltAB operon. The mutants belonging to the first two classes constitutively expressed the gltAB genes and produced sufficient glutamate for growth. By contrast, mutants that belong to the third class appeared most frequently and solved glutamate limitation by increasing the copy number of the poorly expressed gltAB genes. Thus, glutamate auxotrophy of a B. subtilis gltC mutant can be relieved in multiple ways. Moreover, recombination-dependent amplification of the gltAB genes is the predominant mutational event indicating a hierarchy of mutations.
谷氨酸是合成代谢反应中主要的氮供体。革兰氏阳性土壤细菌枯草芽孢杆菌要么利用外源提供的谷氨酸,要么使用由gltAB编码的谷氨酸合酶(GOGAT)来合成谷氨酸。在缺乏谷氨酸的情况下,转录因子GltC会激活用于谷氨酸生产的GOGAT基因的表达。因此,gltC突变菌株对谷氨酸营养缺陷。利用遗传筛选系统,我们能够一步分离并区分gltC抑制突变体。所有突变体都获得了独立于GltC合成谷氨酸的能力。我们鉴定出:(i)编码转录因子GltR的gltR基因中的功能获得性突变;(ii)gltAB操纵子启动子中的突变;以及(iii)包含gltAB操纵子的基因组位点的大量扩增。属于前两类的突变体组成型表达gltAB基因,并产生足够的谷氨酸用于生长。相比之下,属于第三类的突变体出现得最为频繁,它们通过增加低表达的gltAB基因的拷贝数来解决谷氨酸限制问题。因此,枯草芽孢杆菌gltC突变体的谷氨酸营养缺陷可以通过多种方式得到缓解。此外,gltAB基因的重组依赖性扩增是主要的突变事件,表明存在突变等级。