Krachler Michael, Shotyk William
Institute of Environmental Geochemistry, University of Heidelberg, Im Neuenheimer Feld 236, 69120, Heidelberg, Germany.
J Environ Monit. 2004 May;6(5):418-26. doi: 10.1039/b313300a. Epub 2004 Feb 5.
A core from an ombrotrophic Swiss bog representing 12 370 (14)C years of peat accumulation was evaluated as a possible archive of atmospheric deposition of Mo, Th and U. Calcium, Sr, and Ba were also determined to quantify weathering inputs, Mn to follow possible redox transformations, and Rb to identify plant uptake. Each of these elements was determined using ICP-MS, following digestion in a microwave heated autoclave using 3 ml HNO(3) and 0.1 ml HBF(4). Calcium and Sr clearly identify the thickness of the ombrotrophic zone because they are enriched in the minerogenic zone relative to the concentration of mineral matter. The concentration of Ba, however, is proportional to the concentration of mineral matter in all samples, and is not added to peat column by weathering reactions at the peat-sediment interface. The lowest element concentrations are found during the Holocene climate optimum (5320 to 8030 (14)C year BP) with the following natural background values (n= 18): Mo 0.08 +/- 0.02 microg g(-1), U 0.029 +/- 0.008 microg g(-1), Ba 5.2 +/- 2.6 microg g(-1), Th 0.070 +/- 0.022 microg g(-1) and Rb 0.63 +/- 0.09 microg g(-1). By far the highest concentrations of Ba, Mn, Rb and Th were found during the Younger Dryas cold climate event (10 590 (14)C year BP) when the flux of atmospheric soil dust was at its post-glacial maximum. Molybdenum and U are elevated in concentration throughout the minerogenic zone because of sediment weathering and this masks the atmospheric signal in samples older than ca. 8000 (14)C year BP (ca. 9000 calendar years). Enrichment factors (EF) calculated using Sc as a conservative, lithogenic element shows that minerogenic peats are enriched in Mo up to 18x and U 26x, relative to the natural "background" values. During the two millennia prior to industrialisation, the accumulation rate of atmospheric Mo averaged 0.23 +/- 0.13 microg m(-2) year(-1). With the onset of the Industrial Revolution, Mo accumulation rates rapidly and continuously increased to approximately 10 microg m(-2) year(-1) in the late 1980s. These data suggest that Mo in atmospheric aerosols today is derived predominately from anthropogenic emissions. Uranium does not show the same enrichment pattern which suggests that steel-making rather than coal combustion is the primary source of atmospheric Mo contamination at this site.
取自瑞士雨养泥炭沼泽的一个泥炭芯,代表了12370年的泥炭堆积,被评估为钼、钍和铀大气沉降的一个可能存档。还测定了钙、锶和钡以量化风化输入,测定了锰以追踪可能的氧化还原转化,测定了铷以识别植物吸收情况。使用电感耦合等离子体质谱仪(ICP-MS)测定这些元素中的每一种,样品先在微波加热的高压灭菌器中用3毫升硝酸和0.1毫升氟硼酸消化。钙和锶清楚地确定了雨养带的厚度,因为相对于矿物质浓度,它们在矿质带中富集。然而,钡的浓度与所有样品中的矿物质浓度成正比,并且不会通过泥炭 - 沉积物界面的风化反应添加到泥炭柱中。在全新世气候适宜期(公元前5320至8030年碳-14纪年)发现元素浓度最低,具有以下自然背景值(n = 18):钼0.08±0.02微克/克,铀0.029±0.008微克/克,钡5.2±2.6微克/克,钍0.070±0.022微克/克,铷0.63±0.09微克/克。到目前为止,在新仙女木寒冷气候事件(公元前10590年碳-14纪年)期间发现钡、锰、铷和钍的浓度最高,当时大气土壤尘埃通量处于冰期后的最大值。由于沉积物风化,钼和铀在整个矿质带中的浓度升高,这掩盖了年龄超过约8000年碳-14纪年(约9000日历年前)的样品中的大气信号。使用钪作为保守的岩石成因元素计算的富集因子(EF)表明,相对于自然“背景”值,矿质泥炭中钼的富集高达18倍,铀的富集高达26倍。在工业化前的两千年里,大气中钼的积累速率平均为0.23±0.13微克/平方米·年。随着工业革命的开始,钼的积累速率迅速且持续增加,到20世纪80年代后期达到约10微克/平方米·年。这些数据表明,如今大气气溶胶中的钼主要来自人为排放。铀没有表现出相同的富集模式,这表明炼钢而非煤炭燃烧是该地点大气钼污染的主要来源。