Suppr超能文献

外排转运蛋白基因对大肠杆菌对替加环素(GAR-936)敏感性的影响。

Effects of efflux transporter genes on susceptibility of Escherichia coli to tigecycline (GAR-936).

作者信息

Hirata Takahiro, Saito Asami, Nishino Kunihiko, Tamura Norihisa, Yamaguchi Akihito

机构信息

Department of Cell Membrane Biology, Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan.

出版信息

Antimicrob Agents Chemother. 2004 Jun;48(6):2179-84. doi: 10.1128/AAC.48.6.2179-2184.2004.

Abstract

The activity of tigecycline, 9-(t-butylglycylamido)-minocycline, against Escherichia coli KAM3 (acrB) strains harboring plasmids encoding various tetracycline-specific efflux transporter genes, tet(B), tet(C), and tet(K), and multidrug transporter genes, acrAB, acrEF, and bcr, was examined. Tigecycline showed potent activity against all three Tet-expressing, tetracycline-resistant strains, with the MICs for the strains being equal to that for the host strain. In the Tet(B)-containing vesicle study, tigecycline did not significantly inhibit tetracycline efflux-coupled proton translocation and at 10 microM did not cause proton translocation. This suggests that tigecycline is not recognized by the Tet efflux transporter at a low concentration; therefore, it exhibits significant antibacterial activity. These properties can explain its potent activity against bacteria with a Tet efflux resistance determinant. Tigecycline induced the Tet(B) protein approximately four times more efficiently than tetracycline, as determined by Western blotting, indicating that it is at least recognized by a TetR repressor. The MICs for multidrug efflux proteins AcrAB and AcrEF were increased fourfold. Tigecycline inhibited active ethidium bromide efflux from intact E. coli cells overproducing AcrAB. Therefore, tigecycline is a possible substrate of AcrAB and its close homolog, AcrEF, which are resistance-modulation-division-type multicomponent efflux transporters.

摘要

对携带编码各种四环素特异性外排转运蛋白基因(tet(B)、tet(C)和tet(K))以及多药转运蛋白基因(acrAB、acrEF和bcr)的质粒的大肠杆菌KAM3(acrB)菌株,检测了替加环素(9-(叔丁基甘氨酰胺)-米诺环素)的活性。替加环素对所有三种表达Tet的四环素耐药菌株均显示出强效活性,这些菌株的最低抑菌浓度(MIC)与宿主菌株相同。在含Tet(B)的囊泡研究中,替加环素未显著抑制四环素外排偶联的质子转运,在10 μM时也未引起质子转运。这表明替加环素在低浓度下不被Tet外排转运蛋白识别;因此,它表现出显著的抗菌活性。这些特性可以解释其对具有Tet外排耐药决定簇的细菌的强效活性。通过蛋白质免疫印迹法测定,替加环素诱导Tet(B)蛋白的效率比四环素高约四倍,表明它至少被TetR阻遏物识别。多药外排蛋白AcrAB和AcrEF的MIC增加了四倍。替加环素抑制了过量表达AcrAB的完整大肠杆菌细胞中溴化乙锭的主动外排。因此,替加环素可能是AcrAB及其紧密同源物AcrEF的底物,它们是耐药调节分裂型多组分外排转运蛋白。

相似文献

1
Effects of efflux transporter genes on susceptibility of Escherichia coli to tigecycline (GAR-936).
Antimicrob Agents Chemother. 2004 Jun;48(6):2179-84. doi: 10.1128/AAC.48.6.2179-2184.2004.
2
Occurrence of tetracycline resistance genes among Escherichia coli isolates from the phase 3 clinical trials for tigecycline.
Antimicrob Agents Chemother. 2007 Sep;51(9):3205-11. doi: 10.1128/AAC.00625-07. Epub 2007 Jul 9.
4
Potential of Tetracycline Resistance Proteins To Evolve Tigecycline Resistance.
Antimicrob Agents Chemother. 2015 Nov 23;60(2):789-96. doi: 10.1128/AAC.02465-15. Print 2016 Feb.
5
Tigecycline is modified by the flavin-dependent monooxygenase TetX.
Biochemistry. 2005 Sep 6;44(35):11829-35. doi: 10.1021/bi0506066.
6
MarA-mediated overexpression of the AcrAB efflux pump results in decreased susceptibility to tigecycline in Escherichia coli.
J Antimicrob Chemother. 2008 Jan;61(1):46-53. doi: 10.1093/jac/dkm397. Epub 2007 Oct 29.
7
Multidrug resistance pump AcrAB-TolC is required for high-level, Tet(A)-mediated tetracycline resistance in Escherichia coli.
J Antimicrob Chemother. 2006 Jul;58(1):31-6. doi: 10.1093/jac/dkl172. Epub 2006 May 10.
8
Roles of and (A) Mutations in Conferring Tigecycline Resistance in Carbapenem-Resistant Klebsiella pneumoniae Clinical Isolates.
Antimicrob Agents Chemother. 2017 Jul 25;61(8). doi: 10.1128/AAC.00391-17. Print 2017 Aug.

引用本文的文献

1
Transposon insertion sequencing reveals novel hypermutator genes in .
mBio. 2025 Jun 27:e0096625. doi: 10.1128/mbio.00966-25.
2
The tigecycline resistance mechanisms in Gram-negative bacilli.
Front Cell Infect Microbiol. 2024 Nov 20;14:1471469. doi: 10.3389/fcimb.2024.1471469. eCollection 2024.
3
Mechanisms of tigecycline resistance in Gram-negative bacteria: A narrative review.
Eng Microbiol. 2024 Aug 17;4(3):100165. doi: 10.1016/j.engmic.2024.100165. eCollection 2024 Sep.
4
Comparison of Resistance Acquisition and Mechanisms in Erwinia amylovora against Agrochemicals Used for Fire Blight Control.
Plant Pathol J. 2024 Oct;40(5):525-536. doi: 10.5423/PPJ.OA.07.2024.0106. Epub 2024 Oct 1.
5
Molecular mechanisms of tigecycline-resistance among .
Front Cell Infect Microbiol. 2024 Apr 9;14:1289396. doi: 10.3389/fcimb.2024.1289396. eCollection 2024.
6
Tigecycline Sensitivity Reduction in Due to Widely Distributed (A) Variants.
Microorganisms. 2023 Dec 18;11(12):3000. doi: 10.3390/microorganisms11123000.
8
Traditional marketed meats as a reservoir of multidrug-resistant Escherichia coli.
Int Microbiol. 2025 May;28(Suppl 1):27-43. doi: 10.1007/s10123-023-00445-y. Epub 2023 Nov 23.
9
Characterization of a Tigecycline-Resistant and -Bearing Klebsiella pneumoniae Strain from a Peacock in a Chinese Zoo.
Appl Environ Microbiol. 2023 Mar 29;89(3):e0176422. doi: 10.1128/aem.01764-22. Epub 2023 Feb 21.
10
A small molecule that disrupts S. Typhimurium membrane voltage without cell lysis reduces bacterial colonization of mice.
PLoS Pathog. 2022 Jun 10;18(6):e1010606. doi: 10.1371/journal.ppat.1010606. eCollection 2022 Jun.

本文引用的文献

1
Protein measurement with the Folin phenol reagent.
J Biol Chem. 1951 Nov;193(1):265-75.
2
Antibiotic efflux pumps in prokaryotic cells: occurrence, impact on resistance and strategies for the future of antimicrobial therapy.
J Antimicrob Chemother. 2003 May;51(5):1055-65. doi: 10.1093/jac/dkg224. Epub 2003 Apr 14.
3
Novel antibacterial agents for the treatment of serious Gram-positive infections.
Expert Opin Investig Drugs. 2003 Mar;12(3):379-99. doi: 10.1517/13543784.12.3.379.
4
Efflux-mediated resistance to tigecycline (GAR-936) in Pseudomonas aeruginosa PAO1.
Antimicrob Agents Chemother. 2003 Mar;47(3):972-8. doi: 10.1128/AAC.47.3.972-978.2003.
5
The Escherichia coli multidrug transporter MdfA catalyzes both electrogenic and electroneutral transport reactions.
Proc Natl Acad Sci U S A. 2003 Feb 18;100(4):1667-72. doi: 10.1073/pnas.0435544100. Epub 2003 Feb 10.
6
AcrAB multidrug efflux pump is associated with reduced levels of susceptibility to tigecycline (GAR-936) in Proteus mirabilis.
Antimicrob Agents Chemother. 2003 Feb;47(2):665-9. doi: 10.1128/AAC.47.2.665-669.2003.
7
Crystal structure of bacterial multidrug efflux transporter AcrB.
Nature. 2002 Oct 10;419(6907):587-93. doi: 10.1038/nature01050.
8
New developments in tetracycline antibiotics: glycylcyclines and tetracycline efflux pump inhibitors.
Drug Resist Updat. 2002 Jul-Aug;5(3-4):119-25. doi: 10.1016/s1368-7646(02)00051-1.
9
Mechanisms of solvent tolerance in gram-negative bacteria.
Annu Rev Microbiol. 2002;56:743-68. doi: 10.1146/annurev.micro.56.012302.161038. Epub 2002 Jan 30.
10
Glycylcyclines: third-generation tetracycline antibiotics.
Curr Opin Pharmacol. 2001 Oct;1(5):464-9. doi: 10.1016/s1471-4892(01)00081-9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验