Ramos Juan L, Duque Estrella, Gallegos Maria-Trinidad, Godoy Patricia, Ramos-Gonzalez Maria Isabel, Rojas Antonia, Teran Wilson, Segura Ana
Department of Plant Biochemistry and Molecular and Cellular Biology, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, E-18008 Granada, Spain.
Annu Rev Microbiol. 2002;56:743-68. doi: 10.1146/annurev.micro.56.012302.161038. Epub 2002 Jan 30.
Organic solvents can be toxic to microorganisms, depending on the inherent toxicity of the solvent and the intrinsic tolerance of the bacterial species and strains. The toxicity of a given solvent correlates with the logarithm of its partition coefficient in n-octanol and water (log Pow). Organic solvents with a log Pow between 1.5 and 4.0 are extremely toxic for microorganisms and other living cells because they partition preferentially in the cytoplasmic membrane, disorganizing its structure and impairing vital functions. Several possible mechanisms leading to solvent-tolerance in gram-negative bacteria have been proposed: (a) adaptive alterations of the membrane fatty acids and phospholipid headgroup composition, (b) formation of vesicles loaded with toxic compounds, and (c) energy-dependent active efflux pumps belonging to the resistance-nodulation-cell division (RND) family, which export toxic organic solvents to the external medium. In these mechanisms, changes in the phospholipid profile and extrusion of the solvents seem to be shared by different strains. The most significant changes in phospholipids are an increase in the melting temperature of the membranes by rapid cis-to-trans isomerization of unsaturated fatty acids and modifications in the phospholipid headgroups. Toluene efflux pumps are involved in solvent tolerance in several gram-negative strains, e.g., Escherichia coli, Pseudomonas putida, and Pseudomonas aeruginosa. The AcrAB-TolC and AcrEF-TolC efflux pumps are important for n-hexane tolerance in E. coli. A number of P. putida strains have been isolated that tolerate toxic hydrocarbons such as toluene, styrene, and p-xylene. At least three efflux pumps (TtgABC, TtgDEF, and TtgGHI) are present in the most extensively characterized solvent-tolerant strain, P. putida DOT-T1E, and the number of efflux pumps has been found to correlate with the degree of solvent tolerance in different P. putida strains. The operation of these efflux pumps seems to be coupled to the proton motive force via the TonB system, although the intimate mechanism of energy transfer remains elusive. Specific and global regulators control the expression of the efflux pump operons of E. coli and P. putida at the transcriptional level.
有机溶剂可能对微生物有毒,这取决于溶剂的固有毒性以及细菌种类和菌株的内在耐受性。给定溶剂的毒性与其在正辛醇和水中的分配系数的对数(log Pow)相关。log Pow在1.5至4.0之间的有机溶剂对微生物和其他活细胞具有极高的毒性,因为它们优先分配在细胞质膜中,破坏其结构并损害重要功能。已经提出了几种导致革兰氏阴性菌耐溶剂性的可能机制:(a)膜脂肪酸和磷脂头部基团组成的适应性改变,(b)形成装载有毒化合物的囊泡,以及(c)属于耐药 - 结瘤 - 细胞分裂(RND)家族的能量依赖性主动外排泵,其将有毒有机溶剂输出到外部介质中。在这些机制中,不同菌株似乎都存在磷脂谱的变化和溶剂的外排。磷脂中最显著的变化是通过不饱和脂肪酸的快速顺式 - 反式异构化使膜的熔点升高以及磷脂头部基团的修饰。甲苯外排泵参与了几种革兰氏阴性菌株的耐溶剂性,例如大肠杆菌、恶臭假单胞菌和铜绿假单胞菌。AcrAB - TolC和AcrEF - TolC外排泵对大肠杆菌中的正己烷耐受性很重要。已经分离出许多耐受甲苯、苯乙烯和对二甲苯等有毒碳氢化合物的恶臭假单胞菌菌株。在特征最广泛的耐溶剂菌株恶臭假单胞菌DOT - T1E中至少存在三种外排泵(TtgABC、TtgDEF和TtgGHI),并且已发现外排泵的数量与不同恶臭假单胞菌菌株的耐溶剂程度相关。尽管能量转移的具体机制仍然难以捉摸,但这些外排泵的运作似乎通过TonB系统与质子动力相关。特异性和全局性调节因子在转录水平上控制大肠杆菌和恶臭假单胞菌外排泵操纵子的表达。