Govaerts Cédric, Wille Holger, Prusiner Stanley B, Cohen Fred E
Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94143, USA.
Proc Natl Acad Sci U S A. 2004 Jun 1;101(22):8342-7. doi: 10.1073/pnas.0402254101. Epub 2004 May 21.
Studies using low-resolution fiber diffraction, electron microscopy, and atomic force microscopy on various amyloid fibrils indicate that the misfolded conformers must be modular, compact, and adopt a cross-beta structure. In an earlier study, we used electron crystallography to delineate molecular models of the N-terminally truncated, disease-causing isoform (PrP(Sc)) of the prion protein, designated PrP 27-30, which polymerizes into amyloid fibrils, but we were unable to choose between a trimeric or hexameric arrangement of right- or left-handed beta-helical models. From a study of 119 all-beta folds observed in globular proteins, we have now determined that, if PrP(Sc) follows a known protein fold, it adopts either a beta-sandwich or parallel beta-helical architecture. With increasing evidence arguing for a parallel beta-sheet organization in amyloids, we contend that the sequence of PrP is compatible with a parallel left-handed beta-helical fold. Left-handed beta-helices readily form trimers, providing a natural template for a trimeric model of PrP(Sc). This trimeric model accommodates the PrP sequence from residues 89-175 in a beta-helical conformation with the C terminus (residues 176-227), retaining the disulfide-linked alpha-helical conformation observed in the normal cellular isoform. In addition, the proposed model matches the structural constraints of the PrP 27-30 crystals, positioning residues 141-176 and the N-linked sugars appropriately. Our parallel left-handed beta-helical model provides a coherent framework that is consistent with many structural, biochemical, immunological, and propagation features of prions. Moreover, the parallel left-handed beta-helical model for PrP(Sc) may provide important clues to the structure of filaments found in some other neurodegenerative diseases.
利用低分辨率纤维衍射、电子显微镜和原子力显微镜对各种淀粉样纤维进行的研究表明,错误折叠的构象体必须是模块化的、紧凑的,并采用交叉β结构。在早期的一项研究中,我们使用电子晶体学来描绘朊病毒蛋白N端截短的致病异构体(PrP(Sc))的分子模型,该异构体被命名为PrP 27-30,它会聚合成淀粉样纤维,但我们无法在右手或左手β-螺旋模型的三聚体或六聚体排列之间做出选择。通过对球状蛋白中观察到的119种全β折叠的研究,我们现在确定,如果PrP(Sc)遵循已知的蛋白质折叠方式,它会采用β-三明治或平行β-螺旋结构。随着越来越多的证据支持淀粉样蛋白中存在平行β-片层结构,我们认为PrP的序列与平行左手β-螺旋折叠兼容。左手β-螺旋很容易形成三聚体,为PrP(Sc)的三聚体模型提供了一个天然模板。这个三聚体模型以β-螺旋构象容纳了89-175位的PrP序列以及C端(176-227位),保留了在正常细胞异构体中观察到的二硫键连接的α-螺旋构象。此外,所提出的模型符合PrP 27-30晶体的结构限制,恰当地定位了141-176位的残基和N-连接糖。我们的平行左手β-螺旋模型提供了一个连贯的框架,与朊病毒的许多结构、生化、免疫和传播特征相一致。此外,PrP(Sc)的平行左手β-螺旋模型可能为在其他一些神经退行性疾病中发现的细丝结构提供重要线索。