Mao J-D, Schmidt-Rohr K
Department of Chemistry, Iowa State University, Gilman Hall, Ames 50011, USA.
Solid State Nucl Magn Reson. 2004 Aug;26(1):36-45. doi: 10.1016/j.ssnmr.2003.09.003.
Selection of alkyl-carbon and suppression of aromatic-carbon 13C nuclear magnetic resonance (NMR) signals has been achieved by exploiting the symmetry-based, systematic difference in their 13C chemical-shift anisotropies (CSAs). Simple three- or five-pulse CSA-recoupling sequences with "gamma-integral" cleanly suppress the signals of all sp2- and sp-hybridized carbons. The chemical-shift-anisotropy-based dephasing is particularly useful for distinguishing the signals of di-oxygenated alkyl (O-C-O) carbons, found for instance as anomeric carbons in carbohydrates, from bands of aromatic carbons with similar 13C isotropic chemical shifts. The alkyl signals are detected with an efficiency of > 60%, with little differential dephasing. Combined with C-H dipolar dephasing, the CSA filter can identify ketal (unprotonated O-C-O) carbons unambiguously for the first time. Conversely, after short cross polarization and the CSA filter, O-CH-O (acetal) carbon signals are observed selectively. The methods are demonstrated on various model compounds and applied to a humic acid.
通过利用基于对称性的13C化学位移各向异性(CSA)的系统差异,实现了烷基碳的选择和芳族碳13C核磁共振(NMR)信号的抑制。具有“γ积分”的简单三脉冲或五脉冲CSA重耦合序列能够干净地抑制所有sp2和sp杂化碳的信号。基于化学位移各向异性的去相位对于区分例如在碳水化合物中作为异头碳发现的双氧化烷基(O-C-O)碳的信号与具有相似13C各向同性化学位移的芳族碳带特别有用。烷基信号的检测效率>60%,几乎没有差分去相位。与C-H偶极去相位相结合,CSA滤波器首次能够明确识别缩酮(未质子化的O-C-O)碳。相反,经过短时间交叉极化和CSA滤波器后,可选择性地观察到O-CH-O(缩醛)碳信号。这些方法在各种模型化合物上得到了验证,并应用于腐殖酸。